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Abstract In this paper, a reliable algorithm is presented to develop approximate analytical solu-

tions of fourth order singularly perturbed two-point boundary value problems in which the highest

order derivative is multiplied by a small parameter. In this method, first the given problem is trans-

formed into a system of two second order ODEs, with suitable boundary conditions and a zeroth-

order asymptotic approximate solution of the transformed system is constructed. Then, the reduced

terminal value system is solved analytically using the differential transform method. Some illustrat-

ing examples are solved and the results are compared with the exact solutions to demonstrate the

accuracy and the efficiency of the method. It is observed that the present method approximates

the exact solution very well not only in the boundary layer, but also away from the layer.
ª 2013 Production and hosting by Elsevier B.V. on behalf of King Saud University.
1. Introduction

Singularly perturbed boundary value problems (SPBVPs) oc-

cur frequently in many areas of applied science and engineer-
ing, e.g., heat transfer, fluid dynamics, quantum mechanics,
optimal control and chemical reactor theory, etc. These prob-
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lems have received a significant amount of attention in the past
and in recent years due to the fact that the solution exhibits a

multiscale character, i.e., there are thin transition layer(s)
where the solution varies rapidly, and while away from the lay-
ers (s) the solution behaves regularly and varies slowly. There-

fore, the numerical treatment of singular perturbation
problems presents some major computational difficulties. For
the past two decades, many numerical methods have appeared
in the literature which cover mostly second order SPBVPs

(Kadalbajoo and Patidar, 2002; Kumar et al., 2007). But only
few authors have developed numerical methods for higher or-
der SPBVPs. Most notable among these are fitted mesh finite-

difference method (Shanthi and Ramanujam, 2002, 2003;
Valanarasu and Ramanujam, 2007), exponentially fitted finite
difference method (Valarmathi and Ramanujam, 2002a,b;

Shanthi and Ramanujam, 2002, 2003, 2004), fitted mesh finite
ing Saud University.
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Table 1 Fundamental operations of DTM.

Original function Transformed function

y(t) = b(u(t) ± v(t)) Y(k) = bU(k) ± b V(k)

y(t) = u(t)v(t) YðkÞ ¼
Pk

‘¼0Uð‘ÞVðk� ‘Þ
yðtÞ ¼ dmuðtÞ

dtm YðkÞ ¼ ðkþmÞ!k! UðkþmÞ
y(t) = tm

YðkÞ ¼ dðk�mÞ ¼ 1; if k ¼ m
0; if k–m

�
y(t) = ekt

YðkÞ ¼ kk

k!

y(t) = sin(xt)
YðkÞ ¼ xk

k! sin
kp
2

� �
¼

0; k 2 even
xkð�1Þ

k�1
2

k! ; k 2 odd

(

y(t) = cos(xt)
YðkÞ ¼ xk

k! cos
kp
2

� �
¼

xkð�1Þ
k
2

k! ; k 2 even
0; k 2 odd

(
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element method (Babu and Ramanujam, 2007), fitted Nume-
rov method (Phaneendra et al., 2012), spline method (Siddiqi
et al., 2011; Akram and Amin, 2012), Adomain decomposition

and homotopy methods (Syam and Attili, 2005) and reproducing
Kernel method (Cui and Geng, 2008; Akram and Rehman,
2012). The aim of our study is to employ the Differential Trans-

form Method (DTM) as an alternative to existing methods for
solving higher order SPBVPs. The basic idea of DTM was ini-
tially introduced by Zhou (1986) who solved linear and nonlinear

initial value problems in the electric circuit analysis. It is a semi-
numerical and semi-analytic technique that formulizes the Taylor
series in a totally different manner. With this technique, the given
differential equation and its related boundary conditions are

transformed into a recurrence relation that finally leads to the
solution of a system of algebraic equations as coefficients of a
power series solution. Different applications of DTM can be

found in (Jang et al., 2000; Köksal and Herdem, 2002; Abdel-
Halim Hassan, 2008; Ayaz, 2004; Arikoglu and Ozkol, 2006;
Liu and Song, 2007; Momani and Noor, 2007; Chu and Chen,

2008; El-Shahed, 2008; Momani and Ertürk, 2008; Odibat,
2008; Ravi Kanth and Aruna, 2009; Kuo and Lo, 2009; Al-Saw-
alha and Noorani, 2009a,b; Ebaid, 2010; Thongmoon and Pus-

juso, 2010; Kurulay and Bayram, 2010; Doğan et al., 2011;
Alomari, 2011; Demirdag and Yesilce, 2011; Gupta, 2011; Biazar
et al., 2012; Gökdoğan et al., 2012 and El-Zahar, 2012, 2013). In
this paper, a reliable algorithm is presented to develop approxi-

mate analytical solutions of fourth order singularly perturbed
two-point boundary value problems in which the highest order
derivative is multiplied by a small parameter. In this method, first

the given problem is transformed into a system of two second or-
der ODEs, with suitable boundary conditions and a zeroth-order
asymptotic approximate solution of the transformed system is

constructed. Then, the reduced terminal value system is solved
analytically using the DTM. Some illustrating examples are
solved and compared with the exact solutions to demonstrate

the accuracy and the efficiency of the method. It is observed that
the present method approximates the exact solution very well not
only in the boundary layer, but also away from the layer.

2. Basic concepts of the DTM

The DTM that has been developed for the analytical solution
of ODEs is presented in this section for the systems of ODEs.

For this purpose, we consider the following system of ODEs

y01ðtÞ ¼ f1ðt; y1; y2; . . . :; ynÞ;
y02ðtÞ ¼ f2ðt; y1; y2; . . . :; ynÞ;
..
.

y0nðtÞ ¼ fnðt; y1; y2; . . . :; ynÞ;

ð1Þ

subject to initial conditions

yið0Þ ¼ ci; i ¼ 1; 2; . . . ; n: ð2Þ

Let [0,L] be the interval over which we want to find the solu-

tion of the ODE system (1) and (2). In actual applications of
the DTM, the Nth-order approximate solution of the ODE
system (1) and (2) can be expressed by the finite series

yiðtÞ ¼
XN
k¼0

YiðkÞtk þOðtNþ1Þ; t 2 ½0;L�; i

¼ 1; 2; . . . ; n; ð3Þ
where

YiðkÞ ¼
1

k!

dkyiðtÞ
dtk

� �
t¼0
; i ¼ 1; 2; . . . ; n: ð4Þ

which implies that
P1

k¼Nþ1YiðkÞtk is negligibly small. Using
some fundamental properties of the DTM, (Table 1), the

ODE system (1) and (2) can be transformed into the following
recurrence relations

Yiðkþ 1Þ ¼ Fiðk;Y1;Y2; . . . ;YnÞð Þ=ðkþ 1Þ; Yið0Þ
¼ ci; i ¼ 1; 2; . . . ; n; ð5Þ

where Fi(k,Y1,Y2, . . . ,Yn) is the differential transform of the
function fi(t,y1,y2, . . . ,yn), for i= 1,2, . . . ,n. Solving the

recurrence relation (5), the differential transform Yi(k),
k> 0 can be easily obtained .

3. Description of the method

Consider the fourth order linear SPBVP given by:

�eyivðxÞ � aðxÞy000ðxÞ þ bðxÞy00ðxÞ � cðxÞyðxÞ
¼ �hðxÞ; x 2 T; ð6Þ

yð0Þ ¼ p; yð1Þ ¼ q; y00ð0Þ ¼ �r; y00ð1Þ ¼ �s; ð7Þ

where 0 < e << 1, a(x), b(x), c(x), and h(x) are sufficiently

smooth functions satisfying the following conditions:

aðxÞP a > 0; bðxÞP b > 0 ð8Þ
0 P cðxÞP �c; c > 0; ð9Þ
a� cð1þ dÞP g > 0 for some g and c > 0; ð10Þ

and

T ¼ ð0; 1Þ;T ¼ ½0; 1�; and yðxÞ 2 Cð4ÞðTÞ \ Cð2ÞðTÞ:

The SPBVP (6) and (7) can be transformed into an equivalent
system of two second order ODEs of the form

Ay ¼ H()

�y001ðxÞ � y2ðxÞ ¼ 0;

�ey002ðxÞ � aðxÞy02ðxÞ þ bðxÞy2ðxÞ
þcðxÞy1ðxÞ ¼ hðxÞ; x 2 T

y1ð0Þ ¼ p; y1ð1Þ ¼ q;

y2ð0Þ ¼ r; y2ð1Þ ¼ s

8>>>>>><
>>>>>>:

; ð11Þ

where y= (y1(x),y2(x))
T.
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Remark. Here after, the above system (11) is only considered

instead of SPBVP (6) and (7). The above conditions (8)–(10)
guarantee that it is not a turning point problem and the above
system (11), which is equivalent to (6) and (7), is quasi-

monotone. For more details about analytical results such as
existence, uniqueness, and asymptotic behavior of the solution
of (6) and (7) see, (Shanthi and Ramanujam, 2002, 2004).
3.1. A zeroth-order asymptotic approximate solution

One can look for the asymptotic approximation of the solution

of (11) in the form

yðx; eÞ ¼ ðy0 þ z0Þ þ eðy1 þ z1Þ þOðe2Þ

Using one of the standard perturbation methods (Nayfeh,

1981), one can construct the zeroth-order asymptotic approx-
imate solution yas = y0 + z0 where y0 = (y01(x),y02(x))

T is a
solution of the reduced system of (11) given by

�y0001ðxÞ � y02ðxÞ ¼ 0; y01ð0Þ ¼ p; y01ð1Þ ¼ q; x 2 T

�aðxÞy002ðxÞ þ bðxÞy02ðxÞ þ cðxÞy01ðxÞ ¼ hðxÞ; y02ð1Þ ¼ s

�
;

ð12Þ

and z0 is the layer correction given by z0 = (z01(x),z02(x))
T

with

z01ðxÞ ¼ 0;

z02ðxÞ ¼ ðr� y02ð0ÞÞðe�að0Þx=eÞ:

Theorem 3.1. The zeroth-order asymptotic approximation yas of
the solution y of (11) satisfies the inequality

ky� yask 6 C1e;

For proof see (Shanthi and Ramanujam, 2002).

Now, in order to obtain an approximate analytical solution
of (11), we only need to obtain an approximate analytical solu-
tion to the terminal value system (TVS) (12).

3.2. The solution of the TVS (12) by DTM

In this section, the DTM is applied to solve the TVS (12). Tak-

ing differential transformation to (12) by using the related def-
initions in Table 1, we obtain the following recurrence relation:

ðkþ 1Þðkþ 2ÞY01ðkþ 2Þ ¼ �Y02ðkÞ;Xk
‘¼0

Að‘Þðk� ‘þ 1ÞY02ðk� ‘þ 1Þ

¼
Xk
‘¼0

Bð‘ÞY02ðk� ‘Þ þ
Xk
‘¼0

Cð‘ÞY01ðk� ‘Þ �HðkÞ

9>>>>>>>=
>>>>>>>;
; ð13Þ

with transformed boundary conditions:

XN
k¼0

Y01ðkÞ ¼ q;
XN
k¼0

Y02ðkÞ ¼ s; ð14Þ

where Y01(k), Y02(k), A(k), B(k), C(k) and H(k) are the trans-

formed functions of y01(x), y02(x), a(x), b(x), c(x) and h(x)
respectively.
The recurrence relations (13) with the transformed bound-
ary conditions (14) represent a system of algebraic equations
in the coefficients of the power series solution of the system

(12). Solving this algebraic system, the differential transform
series solution ~y0 ¼ ð~y01ðxÞ; ~y02ðxÞÞT of (13) is obtained and gi-
ven by

~y01ðxÞ ¼
XN
k¼0

Y01ðkÞxk

~y02ðxÞ ¼
XN
k¼0

Y02ðkÞxk

9>>>>=
>>>>;
: ð15Þ

And thus, the approximate analytical solution yap ¼
ðyapðxÞ; y00apðxÞÞ

T
of (11) is obtained and given by

yapðxÞ ¼ ~y01ðxÞ
y00apðxÞ ¼ �~y02ðxÞ � ðr� ~y02ð0ÞÞe�að0Þx=e

)
: ð16Þ
3.3. The error analysis

The numerical error of the present method has two sources:
one from the asymptotic approximation and the other from
the analytical approximation by the DTM.

Theorem 3.2. The approximate analytical solution yap of (11)

satisfies the inequality

ky� yapk 6 C eþ 1

ðNþ 1Þ!

� 	
: ð17Þ

Proof. Since the DTM is a formalized modified version of the
Taylor series method, then we have a bounded error given by

ky0 � ~y0k 6
M

ðNþ 1Þ! ; M 6 y
ðNþ1Þ
0 ðnÞ




 


; 0 6 n 6 1:

From Theorem 3.1 and the above bounded error, we have

ky� yapk 6 ky� yask þ kyas � yapk 6 ky� yask þ ky0 � ~y0k

6 C1eþ
M

ðNþ 1Þ!

that is

ky� yapk 6 C eþ 1

ðNþ 1Þ!

� 	
�:

In more times, the DTM results in the exact solution of the
reduced system (12) and the second term of the above error
inequality is vanished. The present method works well for sin-

gular perturbation problems since the singular perturbation
parameter e is extremely small.
4. Illustrating examples

In this section, three examples are given to demonstrate the

accuracy and the efficiency of the method in solving the con-
sidered problems. These examples have been chosen because
the exact solutions are available for comparison.

Example 1. Consider the following SPBVP with variable

coefficients
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Figure 1 Solution comparison, exact solution of Example 1 (solid line) and (24) solution (doted line) at e = 0.05.
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Figure 2 Solution comparison, exact solution of Example 2 (solid line) and (30) solution (doted line) at e = 0.005.

260 E.R. El-Zahar
� eyivðxÞ � 4y000ðxÞ þ ð1þ xÞy00ðxÞ � yðxÞ ¼ �hðxÞ;
x 2 ½0; 1�; ð18Þ

yð0Þ ¼ 1; yð1Þ ¼ 1; y00ð0Þ ¼ �1; y00ð1Þ ¼ �1; ð19Þ

where

hðxÞ ¼ 3� 4e�4=e þ e2

4ð1� e�4=eÞ �
ð�16þ e2Þe�4x=e
64ð1� e�4=eÞ �

1� 2e�4=e

8ð1� e�4=eÞ

� 	
x2

þ 2

3
� e2

64
��6þ 9e�4=e � 2e�4x=e

8ð1� e�4=eÞ

� 	
x� x3

24
:

The exact solution of (18) and (19) is given by

yðxÞ ¼ 1þ e2

64ð1� e�4=eÞ þ
5

12
� e2

64
� e�4=e

ð1� e�4=eÞ

� 	
x

�

� 3� 4e�4=e

8ð1� e�4=eÞ

� 	
x2 � e2e�4x=e

64ð1� e�4=eÞ �
x3

24

�
:

The equivalent system of (18) and (19) is given by

�y001ðxÞ � y2ðxÞ ¼ 0; y1ð0Þ ¼ 1; y1ð1Þ ¼ 1

�ey002ðxÞ � 4y02ðxÞ þ ð1þ xÞy2ðxÞ þ y1ðxÞ
¼ hðxÞ; y2ð0Þ ¼ 1; y2ð1Þ ¼ 1

9>=
>;; ð20Þ

and the reduced system of (20) is given by

�y0001ðxÞ � y02ðxÞ ¼ 0; y01ð0Þ ¼ 1; y01ð1Þ ¼ 1

�4y002ðxÞ þ ð1þ xÞy02 þ y01 ¼ 3
4
þ 17x

12
� x2

8
� x3

24
; y02ð1Þ ¼ 1

)
:

ð21Þ

Taking differential transformation to (21), we obtain the fol-
lowing recurrence relation

Y01ðkþ 2Þ ¼ �Y02ðkÞ=ððkþ 1Þðkþ 2ÞÞ;
Y02ðkþ 1Þ ¼ dðk�3Þþ3dðk�2Þ�34dðk�1Þ�18dðkÞ

96ðkþ1Þ

þ Y01ðkÞþ
Pk

‘¼0
ðdð‘Þþdð‘�1ÞÞY02ðk�‘Þ
4ðkþ1Þ

9>>>=
>>>;
: ð22Þ
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Approximate analytical solutions of singularly perturbed fourth order boundary value problems
with transformed boundary conditions:

XN
k¼0

Y01ðkÞ ¼ 1;
XN
k¼0

Y02ðkÞ ¼ 1: ð23Þ

Solving the recurrence relation (22) with the boundary condi-
tions (23) results in

~y01ðxÞ ¼ 1þ 5
12
x� 3

8
x2 � 1

24
x3

~y02ðxÞ ¼ 3
4
þ x

4

)
;

which is the exact solution of (21). Thus we get the following

approximate analytical solution of (20)

yapðxÞ ¼ 1þ 5
12
x� 3

8
x2 � 1

24
x3

y00apðxÞ ¼ � 3
4
þ x

4
þ 1

4
e�4x=e

� �
)
: ð24Þ

The results obtained using (24) compare very well with the ex-
act solutions as shown in Fig. 1.

Example 2. Consider the following SPBVP

� eyivðxÞ � y000ðxÞ ¼ � cosðxÞ þ e sinðxÞ; x 2 ½0; 1�; ð25Þ
yð0Þ ¼ 1; yð1Þ ¼ 1; y00ð0Þ ¼ 1; y00ð1Þ ¼ sinð1Þ: ð26Þ

The exact solution is given by

yðxÞ ¼ sinð1Þxþ e2xþ 1� sinðxÞ

þ 2e2 þ ðx2 � xÞe�1=e � 2e2e�x=e

2ðe�1=e � 1Þ :

The equivalent system of (25) and (26) is given by

�y001ðxÞ � y2ðxÞ ¼ 0; y1ð0Þ ¼ 1; y1ð1Þ ¼ 1

�ey002ðxÞ � y02ðxÞ ¼ cosðxÞ � e sinðxÞ
y2ð0Þ ¼ �1; y2ð1Þ ¼ � sinð1Þ

9>=
>;; ð27Þ

and the reduced system of (27) is given by

�y0001ðxÞ � y02ðxÞ ¼ 0; y01ð0Þ ¼ 1; y01ð1Þ ¼ 1;

�y002ðxÞ ¼ cosðxÞ; y02ð1Þ ¼ � sinð1Þ:

�
: ð28Þ

Applying differential transform to (28), results in

Y01ðkþ 2Þ ¼ �Y02ðkÞ=ððkþ 1Þðkþ 2ÞÞ

Y01ð0Þ ¼ 1;
XN
k¼0

Y01ðkÞ ¼ 1

Y02ðkþ 1Þ ¼ �1
k!

cos kp
2

� �
=ðkþ 1ÞXN

k¼0
Y02ðkÞ ¼ � sinð1Þ

9>>>>>>>>>=
>>>>>>>>>;
: ð29Þ

Solving (29), we obtain the following approximate analytical
solutions

yapðxÞ ¼ 1:0þ 63433
241920

� sinð1Þ
2

� �
x� 305353

725760
� sinð1Þ

2

� �
x2

þ x3

6
� x5

120
þ x7

5040
� x9

362880

y00apðxÞ ¼ sinð1Þ � 305353
362880

� �
þ x� x3

6
þ x5

120
� x7

5040

þ x9

362880
þ sinð1Þ þ 57527

362880

� �
e�x=e

9>>>>>=
>>>>>;
: ð30Þ

The results obtained using (30) compare very well with the ex-

act solutions as shown in Fig. 2 .

Example 3. Finally, consider the following nonlinear SPBVP



Table 3 Numerical results of Example 2 (e = 10�4).

x Exact solution y(x) Approximate solution yap(x) Error Exact solution y00(x) Approximate solution y00apðxÞ Error

1.0E�06 1.0000e+00 1.0000e+00 9.9529e�11 9.9005e�01 9.9005e�01 4.9537e�08
1.0E�05 1.0000e+00 1.0000e+00 9.5190e�10 9.0485e�01 9.0485e�01 4.7416e�08
1.0E�04 9.9998e�01 9.9998e�01 6.3239e�09 3.6798e�01 3.6798e�01 3.4050e�08
1.0E�03 9.9984e�01 9.9984e�01 1.0027e�08 1.0454e�03 1.0454e�03 2.4893e�08
1.0E�02 9.9841e�01 9.9841e�01 1.0272e�08 9.9998e�03 9.9998e�03 2.4892e�08
1.0E�01 9.8431e�01 9.8431e�01 1.2609e�08 9.9833e�02 9.9833e�02 2.4892e�08
3.0E�01 9.5692e�01 9.5692e�01 1.7081e�08 2.9552e�01 2.9552e�01 2.4892e�08
5.0E�01 9.4131e�01 9.4131e�01 2.0545e�08 4.7943e�01 4.7943e�01 2.4880e�08
7.0E�01 9.4481e�01 9.4481e�01 2.2544e�08 6.4422e�01 6.4422e�01 2.4398e�08
9.0E�01 9.7400e�01 9.7400e�01 1.6702e�08 7.8333e�01 7.8333e�01 1.7071e�08
1.0E+00 1.0000e+00 1.0000e+00 2.2204e�16 8.4147e�01 8.4147e�01 0.0000e+00

Table 4 Numerical results of Example 3 (e = 10�4).

x Exact solution y(x) Approximate solution yap(x) Error Exact solution y00(x) Approximate solution y00apðxÞ Error

1.0E�06 1.0000e+00 1.0000e+00 9.9517e�11 9.9005e�01 9.9005e�01 3.7974e�11
1.0E�05 1.0000e+00 1.0000e+00 9.5178e�10 9.0485e�01 9.0485e�01 3.6318e�10
1.0E�04 9.9998e�01 9.9998e�01 6.3227e�09 3.6798e�01 3.6798e�01 2.4126e�09
1.0E�03 9.9984e�01 9.9984e�01 1.0015e�08 1.0454e�03 1.0454e�03 3.8198e�09
1.0E�02 9.9841e�01 9.9841e�01 1.0150e�08 9.9998e�03 9.9998e�03 3.8537e�09
1.0E�01 9.8431e�01 9.8431e�01 1.1519e�08 9.9833e�02 9.9833e�02 3.9785e�09
3.0E�01 9.5692e�01 9.5692e�01 1.4670e�08 2.9552e�01 2.9552e�01 2.7488e�09
5.0E�01 9.4131e�01 9.4131e�01 1.7908e�08 4.7943e�01 4.7943e�01 8.8606e�10
7.0E�01 9.4481e�01 9.4481e�01 2.0627e�08 6.4422e�01 6.4422e�01 7.0014e�09
9.0E�01 9.7400e�01 9.7400e�01 1.6180e�08 7.8333e�01 7.8333e�01 9.9222e�09
1.0E+00 1.0000e+00 1.0000e+00 3.0317e�10 8.4147e�01 8.4147e�01 3.8417e�10
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Table 5 Maximal error comparison for Example 1.

e DTM-1 DTM-2 DTM-3 DTM-5 DTM-9

10�1 4.1667e�001 4.1667e�002 1.3793e�004 1.3793e�004 1.3793e�004
10�2 4.1667e�001 4.1667e�002 1.5352e�006 1.5352e�006 1.5352e�006
10�3 4.1667e�001 4.1667e�002 1.5589e�008 1.5589e�008 1.5589e�008
10�4 4.1667e�001 4.1667e�002 1.5609e�010 1.5609e�010 1.5609e�010
10�5 4.1667e�001 4.1667e�002 1.5610e�012 1.5610e�012 1.5610e�012

Table 6 Maximal error comparison for Example 2.

e DTM-1 DTM-3 DTM-5 DTM-7 DTM-9

10�1 1.5857e�001 8.1377e�003 6.6434e�003 6.6434e�003 6.6434e�003
10�2 1.5853e�001 8.1377e�003 1.9566e�004 9.4397e�005 9.4397e�005
10�3 1.5853e�001 8.1377e�003 1.9566e�004 2.7557e�006 9.9235e�007
10�4 1.5853e�001 8.1377e�003 1.9566e�004 2.7557e�006 4.9537e�08
10�5 1.5853e�001 8.1377e�003 1.9566e�004 2.7557e�006 4.9537e�08

Table 7 Maximal error comparison for Example 3.

e DTM-1 DTM-3 DTM-5 DTM-7 DTM-9

10�1 1.5857e�001 8.1377e�003 6.6434e�003 6.6434e�003 6.6434e�003
10�2 1.5853e�001 8.1377e�003 1.9566e�004 9.4396e�005 9.4396e�005
10�3 1.5853e�001 8.1377e�003 1.9566e�004 2.7560e�006 9.9226e�007
10�4 1.5853e�001 8.1377e�003 1.9566e�004 2.7560e�006 2.0627e�008
10�5 1.5853e�001 8.1377e�003 1.9566e�004 2.7560e�006 1.8500e�008

Approximate analytical solutions of singularly perturbed fourth order boundary value problems
� eyivðxÞ � y000ðxÞ þ y00ðxÞ � yðxÞ2 ¼ �hðxÞ; ð31Þ
yð0Þ ¼ 1; yð1Þ ¼ 1; y00ð0Þ ¼ 1; y00ð1Þ ¼ sinð1Þ; ð32Þ

where

hðxÞ ¼ cosðxÞ� ðeþ 1Þ sinðxÞ� e�1=e� e�x=e

e�1=e� 1

þ sinð1Þxþ e2x� sinðxÞþ 2e2þðx2�xÞe�1=e� 2e2e�x=e

2ðe�1=e� 1Þ

� 	2

:

The exact solution of (31) and (32) is given by

yðxÞ ¼ sinð1Þxþ e2x� sinðxÞ þ 1

þ 2e2 þ ðx2 � xÞe�1=e � 2e2e�x=e

2ðe�1=e � 1Þ :

The equivalent system of (31) and (32) is given by

�y001ðxÞ � y2ðxÞ ¼ 0; y1ð0Þ ¼ 1; y1ð1Þ ¼ 1

�ey002ðxÞ � y02ðxÞ þ y2ðxÞ þ ðy1ðxÞÞ
2 ¼ hðxÞ

y2ð0Þ ¼ �1; y2ð1Þ ¼ � sinð1Þ

9>=
>;; ð33Þ

and the reduced system of (33) is given by

�y0001ðxÞ � y02ðxÞ ¼ 0; y01ð0Þ ¼ 1; y01ð1Þ ¼ 1

�y002ðxÞ þ y02ðxÞ þ ðy01ðxÞÞ
2 ¼ cosðxÞ � sinðxÞ

þð1þ sinð1Þx� sinðxÞÞ2

y02ð1Þ ¼ � sinð1Þ

9>>>>=
>>>>;
: ð34Þ

Applying differential transform to (34), results in
Y01ðkþ 2Þ ¼�Y02ðkÞ=ððkþ 1Þðkþ2ÞÞ

Y01ð0Þ ¼ 1;
XN
k¼0

Y01ðkÞ ¼ 1

Y02ðkþ 1Þ ¼ Y02ðkÞþ
Xk
‘¼0

Y01ð‘ÞY01ðk� ‘Þ� 1
k!

cos kp
2

� �
� sin kp

2

� �� �"

�
Xk
‘¼0

dð‘Þþ sinð1Þdð‘�1Þ� 1
‘!
sin ‘p

2

� �� ��
� dðk� ‘Þþ sinð1Þdðk� ‘� 1Þ� 1

ðk�‘Þ! sin
ðk�‘Þp

2

� �� ��i.
½kþ 1�

XN
k¼0

Y02ðkÞ ¼� sinð1Þ

9>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>;

:

ð35Þ

Solving (35), the approximate analytical solutions are obtained

and given by

yapðxÞ¼ 1�0:1585290xþ1:908001 10�9x2þ0:1666667x3

�1:9300010�9x4�0:8333333 10�2x5�5:90387 10�11x6

þ0:1984127 10�3x7�5:414054 10�12x8�0:2755730 10�5x9

y00apðxÞ¼ 3:816001 10�9þx�2:31000 10�8x2�0:1666667x3

�1:776763 10�9x4þ0:8333331 10�2x5þ5:903878 10�11x6

�0:1984127 10�3x7þ5:414054 10�12x8þ0:2755732 10�5x9

þð1�3:816001 10�9Þe�x=e

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

:

ð36Þ

Results obtained by the method are compared with the exact

solution of each example and the results are listed in Tables



Table 8 Processing times used in solving Examples 1, 2 and 3.

DTM-3 DTM-5 DTM-7 DTM-9

Example 1 0.0000 0.00001 0.00002 0.00002

Example 2 0.0000 0.00010 0.00011 0.00011

Example 3 0.0000 0.00009 0.00011 0.00013
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2–4. The results show that the obtained approximate solutions
are in good agreement with the exact solutions not only in the
boundary layer, but also away from the layer.

Tables 5–7 present themaximumabsolute point wise error for

the numerical solution obtained for each previous example at
different values of the perturbation parameter, e, and the DTM
order, N. Results in Table 5 show that when N P 3 the DTM

results in the exact solution of the reduced system (21) and the
numerical error source is only the asymptotic approximation.

The results in Tables 5–7 show that the accuracy of the
approximate solution increases as the order of the DTM
increases and the perturbation parameter e decreases. More-

over, with a constant order of the DTM, the numerical error is
maintained at the same level (bold text) for a family of singular
perturbation parameter values, where the DTM is the dominant

error source, and vice versa when the asymptotic approxima-
tion is the dominant error source, which confirm that the
numerical results agree closely with the theoretical analysis.

Table 8 presents the processing times used in solving each
previous example by DTM at different order values, N, where

all calculations are carried out by MAPLE 14 software in a PC
with a Pentium 2 GHz and 512 MB of RAM. We can observe
that the DTM is a fast and effective tool for solving the
considered problems.
5. Conclusions

In this paper, we presented a new and reliable algorithm to de-
velop approximate analytical solutions of fourth order

SPBVPs in which the highest order derivative is multiplied
by a small parameter. The given fourth order problem is trans-
formed into a system of two second order ODEs, with suitable
boundary conditions and a zeroth-order asymptotic approxi-

mate solution of the transformed system is constructed. Then,
the DTM is applied to solve the terminal value system analyt-
ically. The method provides the solutions in terms of conver-

gent series with easily computable components. This
approach is simple in applicability as it does not require line-
arization or discretization like other numerical and approxi-

mate methods. We have applied it on three examples and the
approximate analytical solutions are presented for each one.
Results obtained by the method are compared with the exact
solution of each example and are found to be in good agree-

ment with each other not only in the boundary layer, but also
away from the layer. Numerical results are presented in figures
and tables at different values of the perturbation parameter, e,
and the DTM order N. The results show that the accuracy of
the approximate solution increases as the order of the DTM
increases and the perturbation parameter e decreases which

agree with the theoretical analysis. The method works success-
fully in handling the considered fourth order SPBVPs with a
high accuracy and a minimum size of computations. This
emphasizes the fact that the present method is applicable to
other higher order SPBVPs.
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Solution of free vibration equation of elastically supported Tim-

oshenko columns with a tip mass by differential transform method.

J. King Saud Univ. – Science 23 (2), 223–228.

Ebaid, A.E.-H., 2010. Approximate periodic solutions for the non-

linear relativistic harmonic oscillator via differential transforma-

tion method. Commun. Nonlinear. Sci. Numer. Simul. 15, 1921–

1927.

El-Shahed, M., 2008. Application of differential transform method to

non-linear oscillatory systems. Commun. Nonlinear. Sci. Numer.

Simul. 13, 1714–1720.

El-Zahar, E.R., 2012. Approximate analytical solutions for singularly

perturbed boundary value problems by multi-step differential

transform method. J. Appl. Sci. 12 (19), 2026–2034.



Approximate analytical solutions of singularly perturbed fourth order boundary value problems
El-Zahar, E.R., 2013. An Adaptive Step-Size Taylor Series Based

Method and Application to Nonlinear Biochemical Reaction

Model. Trends. Appl. Sci. Res., in press.
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