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Abstract This paper applies the homotopy analysis method proposed by Liao to obtain approx-

imate analytic solutions for integral equations of two-dimensional. Some examples are presented

to show the ability of the method for integral equations of two-dimensional. The results reveal that

the method is very effective and simple.
ª 2010 King Saud University. All rights reserved.
1. Introduction

Homotopy analysis method (HAM), first proposed by Liao
(1992). HAM properly overcomes restrictions of perturbation
techniques because it does not need any small or large param-
eters to be contained in the problem. Liao, in his book (Liao,

2003a), proves that this method is a generalization of some
previously used techniques such as d-expansion method, artifi-
cial small parameter method and ADM. This method has pro-

ven to be very effective and result in considerable saving in
computation time (Liao, 1995, 2003b,c, 2004; Liao and Chw-
ang, 1998; Sami et al., 2008; Abbasbandy, 2007).
53457893.
(A. Sousaraie).

ity. All rights reserved. Peer-

d University.

lsevier
2. Analysis of the method

Consider the following linear integral equation of two-
dimensional

uðx; yÞ ¼ fðx; yÞ þ
Z y

c

Z b

a

kðx; y; s; tÞuðs; tÞdsdt:

To illustrate the homotopy analysis method, we consider

N½uðx;yÞ� ¼ uðx;yÞ � fðx; yÞ �
Z y

c

Z b

a

kðx; y; s; tÞuðs; tÞdsdt ¼ 0;

ð1Þ

where uðx; yÞ is an unknown function, respectively. By means

of generalizing the traditional homotopy method, Liao
(2003a) constructs the so-called zeroth-order deformation
equation

ð1� pÞLðuðr; t; pÞ � u0ðx; yÞÞ ¼ p�hHðr; tÞNðr; t; pÞ; ð2Þ

where p 2 ½0; 1� is the embedding parameter, �h is a nonzero
auxiliary parameter, Hðx; yÞ– 0 is nonzero auxiliary function,
L is an auxiliary linear operator, u0ðx; yÞ ¼ fðx; yÞ and
uðx; y; pÞ is a unknown function, respectively It is important
that one has great freedom to choose auxiliary parameter �h
in HAM. If p = 0 and 1, it holds
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uðx; y; 0Þ ¼ u0ðx; yÞ ¼ fðx; yÞ; uðx; y; 1Þ ¼ uðx; yÞ: ð3Þ

Thus, as p increases from 0 to 1, the solution uðr; t; pÞ varies
from the initial guesses u0ðr; tÞ to the solution uðr; tÞ. Expand-
ing uðr; t; pÞ; in Taylor series with respect to p, we have

uðx; y; pÞ ¼ fðx; yÞ þ
X1
m¼1

umðx; yÞpm; ð4Þ

where

umðx; yÞ ¼
1

m!

@muðx; y; pÞ
@pm

����
p¼0
: ð5Þ

If the auxiliary linear operator, the initial guess, the auxil-

iary parameter �h, and the auxiliary function are so properly
chosen, the series (4) converges at p= 1, then we have

uðx; yÞ ¼ fðx; yÞ þ
X1
m¼1

umðr; tÞ: ð6Þ

Define the vector ~un ¼ fu0 ¼ f; u1; . . . ung. Differentiating
Eq. (2) m times with respect to the embedding parameter p
and then setting p ¼ 0 and finally dividing them by m!, we ob-
tain the mth-order deformation equation

L½um � vmum�1� ¼ �hHðx; yÞRmð~um�1Þ; ð7Þ

where

Rmð~um � 1Þ ¼ 1

ðm� 1Þ!
@m�1Nðx; y; pÞ

@pm�1
; ð8Þ

and

vm ¼
0 m 6 1;

1 m > 1:

�
ð9Þ

Applying L�1 on both side of Eq. (7), we get

umðx; yÞ ¼ vmum�1ðx; yÞ þ �hL�1½Hðx; yÞRmð~um�1Þ�: ð10Þ

In this way, it is easily to obtain um form m P 1, at Mth-
order, we have

uðx; yÞ ¼
XM
m¼0

umðx; yÞ: ð11Þ

When M!1 we get an accurate approximation of the
original Eq. (1). For the convergence of the above method
we refer the reader to Liao (2003a).

3. Numerical example

Example 1. Consider the following linear Volterra–Fredholm
equation

uðx; yÞ ¼ fðx; yÞ þ
Z y

�1

Z 1

�1
xys2t2uðs; tÞdsdt; ð12Þ

where

fðx; yÞ ¼ x2 � 13

15
xy� 2

15
xy4;

with the exact solution uðx; yÞ ¼ x2 þ xy.

To solve the Eq. (12) by means of homotopy analysis meth-
od we choose

u0ðx; yÞ ¼ fðx; yÞ: ð13Þ
We now define a nonlinear operator as

N½uðx; yÞ� ¼ uðx; y; pÞ � fðx; yÞ �
Z y

�1

Z 1

�1
uðx; y; pÞdsdt:

Using above definition, with assumption Hðx; tÞ ¼ 1. We
construct the zeroth-order deformation equation

ð1� pÞLðuðx; t; pÞ � u0ðx; tÞÞ ¼ p�hNðuðx; t; pÞÞ;

obviously, when p = 0 and 1,

uðx; t; 0Þ ¼ u0ðx; tÞ; uðx; t; 0Þ ¼ uðx; tÞ:

Thus, we obtain the mth-order deformation equations

L½um � vmum�1� ¼ �hRmð~um�1Þ; ð14Þ

where

Rmð~um�1Þ ¼ um�1ðx; yÞ �
Z y

�1

Z 1

�1
xys2t2um�1ðs; tÞdsdt:

Now, the solution of the mth-order order deformation Eq.
(14)

umðx; tÞ ¼ vmum�1ðx; tÞ þ �hL�1½Rmð~um�1Þ�: ð15Þ

Finally, we have

uðx; tÞ ¼ u0ðx; tÞ þ
X1
m¼1

umðx; tÞ:

From Eqs. (13) and (15) and subject to initial condition

umðx; 0Þ ¼ 0; m P 1:

We obtain

u0ðx; yÞ ¼ x2 � 13

15
xy� 2

15
xy4;

u1ðx; yÞ ¼ ��h
2

15
xyðy3 þ 1Þ;

u2ðx; yÞ ¼ 0:

And by repeating this approach, we obtain

u3ðx; tÞ ¼ u4ðx; tÞ ¼ � � � ¼ 0:

When �h ¼ �1 we have

uðx; tÞ ¼
X1
i¼0

uiðx; tÞ

¼ x2 � 13

15
xy� 2

15
xy4 þ 2

15
xyðy3 þ 1Þ þ 0þ 0þ � � � ;

uðx; yÞ ¼ x2 þ xy;

which is an exact solution.

Example 2. Consider the following Volterra–Fredholm
equation

uðx; yÞ ¼ fðx; yÞ þ
Z y

0

Z 1

�1
x2e�suðs; tÞdsdt; ð16Þ

where

fðx; yÞ ¼ y2ex � 2

3
x2y3;

with the exact solution is uðx; yÞ ¼ y2ex:

To solve Eq. (16) by means of homotopy analysis method,
we have



Figure 2 Exact solution for Example 2.
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u0ðx; yÞ ¼ fðx; yÞ; ð17Þ

We now define a nonlinear operator as

N½uðx; yÞ� ¼ uðx; y; pÞ � fðx; yÞ �
Z y

0

Z 1

�1
x2e�suðs; tÞdsdt:

Using above definition, with assumption Hðx; tÞ ¼ 1: We

construct the zeroth-order deformation equations

ð1� pÞLðuðx; t; pÞ � u0ðx; tÞÞ ¼ p�hNðuðx; t; pÞÞ;

obviously, when p= 0 and 1,

uðx; t; 0Þ ¼ u0ðx; tÞ; uðx; t; 0Þ ¼ uðx; tÞ:

Thus, we obtain the mth-order deformation equations

L½um � vmum�1� ¼ �hRmð~um�1Þ; ð18Þ

where

Rmð~um�1Þ ¼ um�1ðx; yÞ �
Z y

�1

Z 1

�1
x2e�suðs; tÞdsdt:

Now, the solution of the mth-order order deformation Eq.
(16)

umðx; tÞ ¼ vmum�1ðx; tÞ þ �hL�1½Rmð~um�1Þ�: ð19Þ

Finally, we have

uðx; tÞ ¼ u0ðx; tÞ þ
X1
m¼1

umðx; tÞ:

From Eqs. (17) and (18) and subject to initial condition

umðx; 0Þ ¼ 0; m P 1:

We obtain

u0ðx; yÞ ¼ y2ex � 2

3
x2y3;

u1ðx; yÞ ¼ �h
1

6
y4x2e� �h

5

6
y4x2e�1 � �h

2

3
x2y3;

..

.

Figure 1 HAM solution for Example 2.
When �h ¼ �1; we have

u ¼
X1
i¼0

ui

¼ y2ex � 2

3
x2y3 � 1

6
y4x2eþ 5

6
y4x2e�1 þ 2

3
x2y3 þ 1

3
y5x2

� 5

6
y5x2e�2 � 1

30
y5x2e2 � 5

6
y4x2e�1 þ 1

6
y4x2eþ � � � :

The exact solution and HAM results are shown in Figs. 1
and 2, respectively.
4. Conclusion

In this work we applied homotopy analysis method for solving
integral equations of two-dimensional. The approximate solu-

tions obtained by the homotopy analysis method are com-
pared with exact solutions. It can be concluded that the
homotopy analysis method is very powerful and efficient tech-

nique in finding exact solutions for wide classes of problems. In
our work, we use the MAPLE 11 package to carry the
computations.
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