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Abstract This study proposes the probabilistic dynamic programming model to address the

stochastic demand issue in aircraft acquisition problem. A probable phenomena is defined to com-

prehend the uncertain state variables so that the targeted level of service could be achieved profit-

ably by the airline company. The objective function and the constraints have a linear expression

with respect to the decision variables, and hence the proposed model is then converted as a linear

programming model. The proposed model and the solution method are then examined with an illus-

trative case study to determine the number and the types of new aircraft that should be purchased at

every time period. The results show that the proposed methodology is viable in providing the

optimal solution.
ª 2011 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

The level of passenger demand varies from time to time due to

unpredicted events, such as the outbreaks of flu diseases. Such
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uncertainty in travel demand could affect the operational prof-
it and the level of services of airline companies. One major
operational decision that requires careful planning is the acqui-

sition of new aircraft. Based on the projected level of demand,
airline companies have to decide on their aircraft’s fleet size. In
such a case, how to determine the number of aircraft and the
types of the aircraft required in meeting the level of demand

is utmost important especially when the demand level is uncer-
tain about the point of planning. Past literature studies (New,
1975; Wei and Hansen, 2005) revealed that the level of travel-

lers’ demand needs to be considered in obtaining the optimal
solution for the aircraft acquisition model. Listes and Dekker
(2005) mentioned that if stochasticity is considered, the solu-

tion obtained is more robust and closer to the realistic
implementation.

Considering stochastic demand for airline operational plan-

ning, Pitfield et al. (2009) adopted simultaneous equations ap-
proach to evaluate the real airline data. They found that the
level of demand elasticity could affect the aircraft size as well
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as the service frequency. Apart from this, uncertainty of future

demand was inspected by List et al. (2003) by using a partial
moment measure of risk to solve the robust optimization prob-
lem. Listes and Dekker (2005) then investigated the best fleet
composition (i.e. choice of aircraft for the most profitable

operation subject to the airline’s planned schedule) by using
scenario aggregation-based approach. They looked into the
robustness of an airline fleet configuration that accounts

explicitly for short-term stochastic demand fluctuations. In
the study, they found that the stochastic approach is pertinent
and viable in capturing the robustness of a larger set of realistic

data. However, the limitation of the study is that only short
term planning horizon is considered. Besides, there are some
studies in fleet assignment and scheduling problem that con-

sider stochastic demand. Yan et al. (2008) developed a stochas-
tic programming model for the flight scheduling model, and
Feldman (2002) reported that stochastic demand should be
considered when carrying out the aircraft assignment.

It could be seen that there is limited studies in the aircraft
acquisition model that consider stochastic demand. Neverthe-
less, this is important as, in the reality, the airline company

has to consider the demand stochasticity when they are plan-
ning for the aircraft acquisition. It would be more challenging
when a long term (more than 1 year) planning is to be consid-

ered as the forecasting of the demand might be difficult. As
such, the approaches and models developed for short term
planning might not be useful in such circumstances. There-
fore, in this study, a long term planning of the aircraft acqui-

sition considering the stochastic demand is proposed. An
optimization model that aims to maximize the operational
profit of airline companies is developed by using the probabi-
Parameters

T Horizon length for the pla

MAXbudget(t) Budget constraint allocate

DS
t Random variable for stoc

ORDERt Total number of aircraft t

PARKt Area of hangar (as geome

rt Discount rate for which th

a Significance level of dema

b Significance level of lead t

c Significance level of selling

E(faret) Expected value of flight fa

E(cos tt) Expected value of flight co

ps Probability to own It as th

An
t Total of aircraft owned

Functions

P(It) Function of discounted pr

f Dt;A
n
t

� �
Function of number of fli

hgf Dt;A
n
t

� �
Maintenance cost function

Sets

Xt = (xt1,xt2, . . . ,xtn) Number of aircraft to be

It = (Int1y, Int2y, . . . , Intny) Initial number of aircraft

Ot = (Ot1,Ot2, . . . ,Otn) Number of aircraft to be

Rt = (Rt1,Rt2, . . . ,Rtn) Number of aircraft to be

Ut = (ut1,ut2, . . . ,utn) Setup cost for the acquisit

S= (s1, s2, . . . , sk) Phenomenon of owning It
PURCt = (purct1,purct2, . . . ,purctn) Purchase cost of aircraft

DPt = (dpt1,dpt2, . . . ,dptn) Payable deposit of aircraf

SEATn = (seat1,seat2, . . . , seatn) Number of seats of aircra

SOLDt = (soldt1y, soldt2y, . . . ,soldtny) Number of aircraft sold
listic dynamic programming model. This approach is selected

as it is capable of decomposing the proposed model into a
series of simpler single-period sub-problems during the plan-
ning horizon. More importantly, this approach considers
states (i.e. decision variables) and the corresponding profits

which are probabilistic (not deterministic) at each stage.
The decision variables of the acquisition model are the num-
ber and types of aircraft that need to be purchased in order

to achieve the objective. To capture the demand uncertainty,
it is assumed that the travel demand could be described by
some probabilistic distributions. Besides, the probable phe-

nomena are defined according to the targeted confidence level
as the occurrence of state variables is probabilistic due to
uncertain demand. This is necessary in order to capture the

uncertainty of state variables properly as well as to ensure
that the airline company could achieve the targeted level of
service profitably. It is then shown that the probabilistic dy-
namic programming model could be converted as a linear

programming model if the objective function and the con-
straints are assumed to have a linear relationship with respect
to the decision variables. An illustrative case study is devel-

oped to test the proposed model and methodology. For sim-
plicity, only two types of aircraft are considered. Gu et al.
(1994) mentioned that if more than two aircraft types are

considered, the problem might become a NP-hard problem
which can only be solved by meta-heuristic methods.

2. Nomenclature

Following are the notations used in this study (apply for n
types of aircraft at age y for which t is the operating period):
nning period

d for the acquisition of new aircraft

hastic demand (correspond to phenomenon S)

hat could be purchased in the market

try limitation)

e discount factor is (1 + rt)
�t

nd constraint

ime constraint

time constraint

re per passenger

st per passenger

e initial number of aircraft (at phenomenon S)

ofit (with It as initial number of aircraft)

ghts in terms of Dt and An
t

in terms of the function of total mileage travelled, g, and f Dt;A
n
t

� �

purchased

ordered

released for sales

ion of aircraft

as the initial number of aircraft

t

ft owned



RESALEt = (resalet1y, . . . , resaletny) Resale price of aircraft

DEPt = (dept1y,dept2y, . . . ,deptny) Depreciation values of aircraft

SIZE= (size1, size2, . . . , sizen) Size of aircraft

RLTt = (RLTt1,RLTt2, . . . ,RLTtn) Real lead time of aircraft

DLTt = (DLTt1,DLTt2, . . . ,DLTtn) Desired lead time of aircraft

RSTt = (RSTt1,RSTt2, . . . ,RSTtn) Real selling time of aircraft

DSTt = (DSTt1,DSTt2, . . . ,DSTtn) Desired selling time of aircraft
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3. Problem formulation

Assume that there is a choice of n types of aircraft that could

be purchased and used for a given origin–destination (OD)
pair. The objective of the study is to find the number and types
of aircraft that should be purchased in order to maximize the

operational profit of the airline company. The passenger de-
mand for the mentioned OD pair is assumed to be stochastic
and could be expressed by some random distributions. To deal

with this stochastic element, the problem is formulated as a
probabilistic dynamic programming problem. The objective
function is to maximize the expected profit of the airline com-

panies, by considering various practical constraints faced in
the operational planning.

3.1. Probabilistic dynamic programming model

3.1.1. Stage, state variables and optimal decision
The stage of the model is the planning horizon of the aircraft
acquisition period. In this study, the planning period, t, in terms
of years is the stage variable of the model. The state variable at

each stage t consisted of various inter-correlated variables,
namely the number of aircraft to be purchased (i.e. main deci-
sion variable for this study), initial number of aircraft owned,
number of aircraft to be sold, number of aircraft to be ordered,

number of aircraft to be released for sales and stochastic de-
mand. The optimal decision (i.e. the alternatives at each stage)
for the study is the acquisition decision of new aircraft in order

to meet stochastic demand while making decision to sell ageing
aircraft with the aim to maximize the expected profit.

3.1.2. Constraints
There are some constraints that need to be considered for the
efficiency of the operational planning of airline companies.

They are explained as follows:

Budget constraint: This is the most practical constraint in

order to ascertain that the solution obtained is financially
feasible for the airline companies. Accordingly, the total
purchase cost of the aircraft should be less than or equal
to the allocated budget, expressed as follows:

Xn
i¼1

purctixti 6MAXbudgetðtÞ ð1Þ

Demand constraint: The stochastic demand can be repre-

sented by some probability distributions. Let a indicates
the significance level to meet stochastic demand; the follow-
ing expression can be formulated to achieve the targeted

level of service:

P
Xn
i¼1
ðSEATiÞ f Dt;A

i
t

� �� �
P DS

t

 !
P 1� a ð2Þ
where 1 � a is the confidence level (i.e. targeted level) while P is
the probability of the occurrence of the desired level of service.
If the demand is assumed to follow the normal distribution

with mean l and standard deviation r, the demand constraint
could be expressed by,

Xn
i¼1
ðSEATiÞ f Dt;A

i
t

� �� �
P F�1ð1� aÞrþ l ð3Þ

where F�1(1 � a) is the inverse cumulative probability of
1 � a.

Parking constraint: When the aircraft is ‘‘off-duty’’, it has

to be parked at the hangar of the airport. In such a case,
the choice of the aircraft would sometimes be constrained
by the geometry layout of the airports. As such, parking
constraint is ought to be considered feasibly. The constraint

is shown as follows:
Xn
i¼1

Xm
y¼0
ðIntiy þ xtiÞðSIZEiÞ 6 PARKt ð4Þ

Sales of aircraft constraint: For some airlines, ageing air-
craft which is less cost-effective might be sold at the begin-

ning of a certain operating period t when the airlines make
the decision to purchase new aircraft. However, to maintain
a certain level of operational efficiency, the number of air-

craft sold should not be more than what was owned by the
aircraft’ companies. It is expressed as follows:

soldtiy 6 Inðt�1Þiðy�1Þ for t ¼ 1; 2; . . . ;T; i

¼ 1; 2; . . . ; n; y ¼ 1; 2; . . . ;m ð5Þ

Order delivery constraint: The delivery of the new aircraft
ordered is depended on the efficiency of the manufacturing
company. Sometimes, there might be a delay in delivering

the new aircraft. As such, the aircraft that one could pur-
chase should not be more than the number of aircraft avail-
able in the market, which is expressed as follows:

Xn
i¼1

xi 6 ORDERt ð6Þ

Lead time constraint: It is important to note that in the real
practice, the airline company would get an agreeable lead

time (the period between placing and receiving an order)
from the aircraft manufacturer when they order new air-
craft that needs to be purchased. However, the real lead

time would be longer than the agreeable lead time and this
will result in the delay of aircraft’ delivery. This signifies
that lead time constraint is necessary as it is able to indicate
when the airline company supposes to place an order for

their new aircraft. This constraint can be expressed as
follows:
PðRLTtn P DLTtnÞ 6 b ð7Þ
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By assuming that lead time is normally distributed with mean

lLT and standard deviation rLT, this constraint could be stated
by,

DLTtn P F�1ð1� bÞrLT þ lLT ð8Þ

where F�1(1 � b) is the inverse cumulative probability of
1 � b.

Selling time constraint: Sales of ageing aircraft generate

income for the airline company. In such a case, the airline
company needs to know the most suitable time to release
their ageing aircraft for sales particularly to look for pros-

pect buyers in advanced. In the real practice, the real selling
time might be longer than the desired selling time. There-
fore, this constraint is formed with the aim to reduce the

possibility for this incident as least as possible. This con-
straint could be defined as follows:

PðRSTtn P DSTtnÞ 6 c ð9Þ

Subsequently, this constraint could be stated as follows by

assuming selling time is normally distributed with mean lST
and standard deviation rST:

DSTtn P F�1ð1� cÞrST þ lST ð10Þ

where F�1(1 � c) is the inverse cumulative probability of 1 � c.

3.1.3. Objective function
The objective of the study is to maximize the expected opera-
tional profit of the airline companies. The profit could be de-

rived by subtraction of the total operating cost from the
total revenue obtained. For an airline company, the total rev-
enue comes from the operational income (i.e. the sales of the

air ticket) and the sales of ageing aircraft. The total operating
cost considers the total purchasing cost of new aircraft, the to-
tal operational cost of aircraft owned, the total maintenance

cost of aircraft owned, the total depreciation expenses of air-
craft owned and the payable deposit of new aircraft to be
purchased.

The total revenue for the operating period t, TR(It), is ex-

pressed as follows:

TRðItÞ ¼ EðfaretÞDS
t þ

Xn
i¼1

Xm
y¼1

soldtiyresaletiy ð11Þ

The first term of the right hand side of Eq. (11) indicates the
expected income obtained from the sale of flight tickets by

considering the stochastic demand DS
t for which DS

t P
F�1ð1� aÞrþ l. The second term indicates the revenue ob-
tained from selling the ageing aircraft.

The total operating cost for the operating period t, TC(It) is

expressed as follows:

TCðItÞ ¼
Xn
i¼1

uti þ purctiðxtiÞ þ Eðcos ttÞDS
t

þ
Xn
i¼1

hgf Dt;A
i
t

� �
þ
Xn
i¼1

Xm
y¼1
ðIntiyÞðdeptiyÞ

þ
Xn
i¼1

dptiðxtiÞ ð12Þ

The first term of the right hand side of Eq. (12) indicates the

setup cost for the acquisition of aircraft; the second term indi-
cates the purchasing cost of the new aircraft; the third term
indicates the expected operating cost; the forth term indicates
the maintenance cost; the fifth term indicates the total depreci-

ation expenses; and the last term indicates the total of payable
deposit for n types of aircraft.

3.1.4. The probable phenomena, s1, . . . , sk
Since the demand is stochastic, the probable phenomenon for
which the likely state variables to be occurred should be de-

fined accordingly in order to capture the uncertainty properly.
To account for the possible phenomenon appropriately, the
airline company needs to consider all possible levels of service

(i.e. actual level of demand) in order to plan their profitable
operations strategically. In general, let s1, . . . , sk be k possible
phenomenon to meet the level of service at a targeted confi-
dence level. Apparently, it is extremely significant as it turns

out to be an essential indicator to imply the possession of air-
craft in order to capture the actual occurrence in the real prac-
tice. Only with this indicator, the actual operation under

uncertainties will then be monitored closely with the developed
optimization model. Correspondingly, the possibility for the
phenomenon s1, . . . , sk to be happened, i.e. ps1 ; . . . ; psk is in-

cluded necessarily in the developed model.
For the real practice, the phenomenon s1, . . . , sk and the cor-

responding probability ps1 ; . . . ; psk ought to be treated tactically
not only based on the company’s decision policy, qualitative

judgement from experts or consultants, but also based on the
past operational performance (i.e. the real historical data)
which includes the records of the number of passengers and

the trend of travel, which associate closely to the number of air-
craft owned by the airline companies. The real data from the
past performance could be a useful indicator for the airline

company to forecast the future trend of demand and hence
constitutes to the probable phenomena. At a certain extent,
opinions from air transportation users should be considered

as well.

3.1.5. The optimization model
It is now ready to present the optimization model considering
the stage and state variables. With the aim to maximize the ex-
pected profit earned by acquiring new aircraft to meet the trav-
ellers demand under uncertainty, the formulation of the

optimization model can be phrased as follows:
For t= 1,2, . . . ,T

PðItÞ ¼ max
X

1

ð1þ rtÞt

� ps1 E fares1t
� �

Ds1
t þ

Xn
i¼1

Xm
y¼1

soldtiyresaletiy

 (

�
Xn
i¼1

uti þ purctiðxtiÞ � E cos ts1t
� �

Ds1
t �

Xn
i¼1

hgfðDt;AtÞ

�
Xn
i¼1

Xm
y¼1
ðIntiyÞðdeptiyÞ �

Xn
i¼1

dptiðxtiÞ
!
þ � � � þ psk

� E fareskt
� �

Dsk
t þ

Xn
i¼1

Xm
y¼1

soldtiyresaletiy

 

�
Xn
i¼1

uti þ purctiðxtiÞ � E cos tskt
� �

Dsk
t �

Xn
i¼1

hgfðDt;AtÞ

�
Xn
i¼1

Xm
y¼1
ðIntiyÞðdeptiyÞ �

Xn
i¼1

dptiðxtiÞ
!
þ Ptþ1ðItÞ

)

ð13Þ
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subject to (1), (3)–(6), (8) and (10) for which DS
t ; Xt;

It; SOLDt; Ot; Rt 2 Zþ [ f0g. The term, 1
ð1þrtÞt

is needed in

order to obtain the discounted value across the period of time
while k indicates the kth possible phenomenon for owning It as
the initial number of aircraft. Only two phenomenon, namely

s1 and s2 are considered in this study in order to reduce the
complexity.

It is important to note that the model formulation is formed
by assuming that the developed model drives operational deci-

sion of airline companies particularly from the aspect of
flight’s frequency and its scheduling to meet stochastic de-
mand. In other words, the acquisition decision of new aircraft

will subsequently lead to the optimal operational decision of a
fleet routing at a desired targeted level of service.

4. Solution method

The proposed probabilistic dynamic programming can be

solved by decomposing it into a chain of simpler sub-problems.
With the working backward, the solution method commences
by solving the sub-problem at the last period of the planning

horizon, T. The current optimal solutions found for the states
at current stage leads to the problem solving at the period of
T � 1,T � 2, . . . , 1. This procedure continues until all the
sub-problems have been solved optimally so that the decision

policy to acquire new aircraft can be determined eventually.
For the developed optimization model (13), the type of solu-
tion method (i.e. linear programming problem or non-linear

programming problem) can be identified clearly with a careful
inspection upon the developed model particularly from the key
components as follows:

� function of the number of flights, f Dt;A
n
t

� �
;

� function of the maintenance cost, hgf Dt;A
n
t

� �
;

� constraints (1), (3)–(6), (8) and (10).

In general, the developed probabilistic dynamic program-
ming model could be equivalent to linear programming or

nonlinear programming model based on the nature of linear-
Table 1 Expected value of flight fare and flight cost per

passenger for the period of t.

Period, t

1 2 3 4 5 6 7 8

Eðfares1t Þ, $ 235 243 254 263 273 284 294 304

Eðfares2t Þ, $ 205 216 228 237 246 256 265 274

Eðcos ts1t Þ, $ 152 158 162 167 171 176 181 186

Eðcos ts2t Þ, $ 135 140 146 150 154 158 163 167

Table 2 Resale price, depreciation values and purchase prices of ai

y resale51y ($ millions) resale52y ($ millions) dep51y ($ million

1 56 159.6 24

2 36.8 104.88 19.2

3 22.4 63.84 14.4

4 12.8 36.84 9.6

5 8 22.78 4.8

Average 14.4
ity. For model (13), the interested parameters appear to be dis-

crete or continuous variables while the function of the number
of flights, f Dt;A

n
t

� �
and maintenance cost, hgf Dt;A

n
t

� �
could be

a linear or nonlinear function. If they are in the form of linear
function in terms of decision variables, then the model (13) will

be solved as a linear programming model, or else it is con-
verted as a nonlinear programming model. In reality, the line-
arity of these components is based on the data collected for the

particular airline company. It shall then be validated by using
the regression test with the aid of some mathematical software.

In the illustrative case study shown in the following section,

linear relationship was adopted for the above-mentioned com-
ponents. Nonetheless, due to the consideration of stochastic
demand which contributed to the probabilistic dynamic pro-

gramming, the linear programming model obtained from the
conversion could not be solved directly using any conventional
methods available for solving linear programming model. One
has to write his or her own algorithm in solving the model. In

this study, spreadsheet functionality of Excel 2007 was de-
ployed to find the optimal solution.

5. An illustrative case study

An illustrative case study is shown to test the proposed model.

Assume that there are two types of aircraft choice where n = 1
for A320-216 and n = 2 for A340-300. The task is to decide
when and which type of aircraft should be purchased over

the planning horizon, i.e. 8 years. To avoid choosing some
unreality value for the parameters and functions, some infor-
mation from the published reports and accessible websites of
airline companies are gathered. Tables 1 and 2 show the data

input of the model. From the Airbus published statement (Air-
bus, 2010a,b), it is obtained that the capacity of aircraft A320-
216 and A340-300 is 180 (with total size 1300 m2) and 295

(with total size 3900 m2), respectively. The expected flight fare
and cost shown in Table 1 is generated based on the available
financial reports of Malaysia Airlines (MAS) (Malaysia Air-

lines, 2010). In addition, the purchase prices of aircraft as
shown in Table 2 were obtained from the published data of
Airbus (Airbus, 2010c). With the purchase prices of aircraft

and the estimated useful life of aircraft, i.e. 5 years, the depre-
ciation values of aircraft are calculated accordingly by using
the sum of the years’ digits approach. The resale prices and
depreciation values as shown in Table 2 are obtained based

on the assumed residual value, i.e. salvage cost of aircraft,
which is 10% of the purchase cost.

There are many variables and parameters in the model.

Since not all real data can be obtained, it is interesting to inves-
tigate how the results of the model changes if the values of the
variables are changed. Six scenarios are created besides the
rcraft.

s) dep52y($ millions) purc51 ($ millions) purc52($ millions)

68.4 80 228

54.72

41.04

27.36

13.7

41.0
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benchmark scenarios to test the difference of the results

obtained.

5.1. Benchmark scenario

The list shown as follows is used in benchmark scenario:

� Two possible phenomenon are considered, where k= 2

for the model (13).
� At t= 1, the initial number of A320-216 and A340-300

are In11 = 50 and In12 = 50, respectively.
� The probability of posses these aircraft at initial period is

ps1 ¼ 0:5 and ps2 ¼ 0:5.
� The budget, MAXbudget(t) = $6,500,000,000.
� Hangar area, PARKt = 500,000 m2.

� Order delivery, ORDERt = 25.
� Discount rate is fixed, r= 5% per annum.
� Confidence level of demand constraint, 1 � a = 95%.

� Significance level of lead time constraint, b = 5%.
� Significance level of selling time constraint, c = 5%.
� Salvage cost of aircraft = 10% of purchase cost of

aircraft.

� At t = 1, the initial number of A320-216 and A340-300 to
be 2 years old is In112 = In122 = 2.

� Ds2
t ¼ 0:95Ds1

t ð14Þ

Number of flights,
� � �

f An

t ¼ 54379þ 483An
t ð15Þ
� Maintenance cost,� �

hgf An

t ¼ 81031þ 705An
t ð16Þ
� Number of aircraft,
NA ¼ 17:9þ 0:000002NP ð17Þ
where NP is the number of passengers

Eq. (15) indicates that 483 flights are operated practically
for each additional aircraft. The constant in this equation
has no practical interpretation. Eq. (16) denotes that $705 is
the estimated increase of maintenance cost for each additional

aircraft and $81,031 is the overall estimated maintenance cost
without considering additional aircraft. These functions signify
that the respective function is strongly affected by the number

of aircraft owned. Eq. (17) implies that each additional 500,000
passengers require one additional aircraft (or one passenger re-
quires 0.000002 aircraft).

With the backward working, model (13) is simplified to
model (18)–(26) when t= T = 8:

PðI8Þ ¼ max
X

1

ð1:05Þ8
ps1 118Ds1

8 þ ð8� 106sold815 þ 2:278
��

� 107sold825Þ

� ð8� 107x81 þ 2:28� 108x82Þ � ð81031þ 705A8Þ
� ð1:44� 107In81 þ 4:1� 107In82Þ
� 8� 106x81 þ 2:28� 107x82Þ
� �

þ ps2 96:3Ds2
8ð

þ ð8� 106sold815 þ 2:278� 107sold825Þ � ð8� 107x81

þ 2:28� 108x82Þ � ð81031þ 705A8Þ � ð1:44� 107In81

þ 4:1� 107In82Þ � ð8� 106x81 þ 2:28� 107x82Þ
��

ð18Þ

subject to
80x81 þ 228x82 6 6500 ð19Þ
In81 þ In82 þ x81 þ x82 P 93 ð20Þ
Ds1

8 P 10; 645; 000; Ds2
8 P 10; 645; 000 ð21Þ

13In81 þ 13x81 þ 39In82 þ 39x82 6 5000 ð22Þ
sold815 6 In81; sold825 6 In82 ð23Þ
x81 þ x82 6 25 ð24Þ
DLT81 P 30; DLT82 P 30 ð25Þ
DST81 P 30; DST82 P 30 ð26Þ
DS

t ; Xt; It; SOLDt; Ot; Rt 2 Zþ [ f0g

Eq. (19) takes the budget constraint of $6500 million. The total
demand simulated for t= 8 is to follow the Normal distribu-

tion, i.e. D8 � N(9 · 106,1 · 106). With a 95% confidence level,
it is found that the total aircraft owned at this period must be
greater than 93, i.e. A8 P 93, which is indicated in Eq. (20).
Eq. (21) indicates that with the verified normal distribution,

the actual level of demand for t = 8 is predicted to be at least
10,645,000 at a confidence level of 95%, which is derived by (2)
and (3). Eq. (22) is the parking constraint; Eq. (23) is the sales

of aircraft constraint, which is derived with the assumption
that aircraft at the age which is equal to or greater than 5 years
old are considered to be sold, thus: sold815 6 In714, and

sold825 6 In724. Eq. (24) indicates the order delivery constraint.
With the assumed normal distribution of RLT8n � N(1.918,
0.3613) and RST8n � N(1.918,0.3613), Eqs. (25) and (26) rep-
resent lead time and selling time constraints respectively for

which the desired period to order new aircraft as well as to
the period to release ageing aircraft for sales is at least
30 months (i.e. 2.5 years � 3 years) in advanced.

The function of the number of flights, f An
t

� �
¼ 54; 379þ

483An
t and the maintenance cost, hgf An

t

� �
¼ 81; 031þ 705An

t

are both linear functions in terms of the total of aircraft

owned, An
t and hence the developed model (13) is solved as a

linear programming model. The procedure can be repeated
to formulate the optimization model for the operating period,

t= 7, 6, 5, 4, 3, 2, 1.

5.1.1. Other scenarios
Another six scenarios with variations to some of the parameters
used in the benchmark scenarios are developed to investigate the
impact of the changes on the results obtained. The following
lists the scenario developed and the value of parameters used.

� Scenarios A and B has a confidence level of 90% and 99%,
respectively.

� Scenarios C and D has the probability of owning the initial
aircraft of 0.6:0.4 and 0.4:0.6, respectively.
� Scenarios E and F has the order delivery constraint value,

ORDERt 6 20 and ORDERt 6 30, respectively.
6. Results and discussion

The results obtained for benchmark scenario is shown in
Table 3. It could be seen that the proposed model and solution
method could produce the optimal solution for the new air-
craft acquisition problem. Table 3 shows a consistent increas-

ing trend of discounted annual profit earned except the period
for which there’s a decrease in stochastic demand or when a
payment is charged for deposit and purchase cost of new air-



Table 3 Benchmark scenario.

t Discounted

annual profit

of period t

Future value

Number of aircraft

to be ordered

Number of aircraft

to be received

Initial number

of aircraft

Number of

aircraft to be

released for sales

Number of aircraft

to be sold

Total

demand,

Ds1
t

A320-

216

A340-

300

A320-

216

A340-

300

A320-

216

A340-

300

A320-

216

A340-

300

A320-

216

A340-

300

1 $1,752,427,113 0 0 0 0 50 50 0 0 0 0 16,000,000

2 $1,316,665,278 7 7 0 0 50 50 2 2 0 0 15,000,000

3 $1,433,492,145 0 0 0 0 50 50 0 0 0 0 14,955,000

4 $1,067,558,039 12 12 0 0 50 50 0 0 0 0 15,000,000

5 $264,749,080 5 5 7 7 55 55 0 0 2 2 20,000,000

6 $1,773,187,933 0 0 0 0 55 55 0 0 0 0 18,000,000

7 $659,375,524 0 0 12 12 67 67 0 0 0 0 30,000,000

8 $2,860,787,049 0 0 5 5 72 72 0 0 0 0 35,000,000
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craft. This happening to be created purposely in terms of
demand fluctuation as it is able to capture the uncertainty of
demand in the real practice in a fairly better manner. In addi-
tion, the obtained result is capable of demonstrating a better

view for airlines in making decision for aircraft acquisition
to account for the inconsistency of demand.

The results of Scenarios A and B (for simplicity, the results

of Scenarios A–F are not shown in this paper) display that
when the confidence level changes, it has an impact on the va-
lue of the total demand. The confidence level indicates the tar-

geted level of a service by an airline company and hence the
level of profit for the airline company is affected if the targeted
level of service changes. The results of Scenarios A and B
established the fact a higher profit is gained (at higher value

of confidence level) when the value of confidence level is on
the rise. Apart from this, the comparison of results shows that
there is a tendency for the airline company to acquire more air-

craft to meet a higher increase of demand but yet subject to the
constraints as elaborated earlier. In overall, the sensitivity re-
sults show that the airline company has to set their target

properly in order to maximize their profit.
From the generated results of Scenarios C and D, it could

be observed that the profit level of the airline company has a

smaller effect when the setting of the probability of owning
an initial number of aircraft changes. Contrary to Scenario
D, expected profit generated by Scenario C is higher as it is
outlined at a higher probability of s1, i.e. ps1 ¼ 0:6 which is

20% higher than ps1 for Scenario D. Similarly, the profit
gained by Scenario C is higher than benchmark scenario dur-
ing the planning horizon. This shows that the higher value of

ps1 which correspond to be higher level of demand subse-
quently results in a higher return. Therefore, the proposed
model is sensitive to the setting of the initial number of aircraft

owned by the airline company.
The results for Scenarios E and F show that the order deliv-

ery constraint could affect the optimal decision but the level of
profit of the airline company is not much affected. This hap-

pens mainly due to the consideration (or decision) of the airline
company in purchasing the least number of aircraft as long as
the total number of aircraft owned is sufficient to provide the

service. Hence, it is important to note that it’s not certainly
profitable to acquire more aircraft as higher purchasing cost
and maintenance cost will occur. In other words, purchase les-

ser aircraft probably contributes higher expected profit due to
the less charged costs.
In a nutshell, it could be seen that the parameters setting in
the model could affect the results, to some extent. The results
are more sensitive to the confidence level compared to other
parameters. This means that there is no ideal means to obtain

a supreme profit as the optimal acquisition decision is decid-
edly dependent on several factors, i.e. current management
policy in practice for airline companies, the desired scenarios,

to be optimized and also unpredictable uncertainties. There-
fore, in order to improve the decision making for air transpor-
tation system, those aspects as mentioned and illustrated

earlier should be taken into consideration considerably.

7. Conclusions

This study formulated an aircraft acquisition decision model
with the aim to maximize the airline companies’ profit. In
doing this, an optimization model is developed by using prob-

abilistic dynamic programming approach in order to capture
the stochastic demand which is assumed to be normally distrib-
uted. The proposed model and solution method is tested with

an illustrative case study, in which most of the input data and
functions is either obtained or simulated using the real data.
The model is solved in determining the optimal decision for

the number and the types of new aircraft that should be pur-
chased during the planning horizon. It is observed that the out-
puts are sensitive to the values of parameters setting, to some

extent, and the results obtained indicated that the proposed
methodology is viable.

With reasonable assumptions that pertain closely to realis-
tic practice, the results reveal that aircraft acquisition decision

is strongly influenced by stochastic demand as well as the pol-
icy of airlines, for instance, the pre-determined age of aircraft
to be sold in this study. Generally, the profit earned is increas-

ing when the level of demand is on the rise except for unex-
pected drop of demand, which could be taken place in the
real practice or when the deposit and purchase cost are

charged for new aircraft. In addition, six scenarios are created
to test the sensitivity of the parameters setting to the outcome.
Remarkably, order delivery constraint has a little impact for
aircraft acquisition decision as compared to the benchmark

problem. Nonetheless, the acquisition decision is compara-
tively influenced by the confidence level and the probability
of owning the initial aircraft. It is shown that the significant

findings in this study are able to steer the relevant authorities
at the management level as well as the decision makers in mak-
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ing a wise profitable operational decision to perform better in

such a competitive airline industry. For the future work, the
proposed model will be tested with a set of real data collected
from the airline company. In addition, the service frequency
assignment will be considered as well.
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