
Journal of King Saud University – Science 32 (2020) 836–841
Contents lists available at ScienceDirect

Journal of King Saud University – Science

journal homepage: www.sciencedirect .com
Resonance states completeness for relativistic particle on a sphere with
two semi-infinite lines attached
https://doi.org/10.1016/j.jksus.2019.02.015
1018-3647/� 2019 Production and hosting by Elsevier B.V. on behalf of King Saud University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding author.
E-mail addresses: irin-a@yandex.ru (I.V. Blinova), iypopov@corp.ifmo.ru

(I.Y. Popov).

Peer review under responsibility of King Saud University.

Production and hosting by Elsevier
I.V. Blinova, I.Y. Popov ⇑, A.I. Popov
ITMO University, Kronverkskiy, 49, Saint Petersburg 197101, Russia

a r t i c l e i n f o a b s t r a c t
Article history:
Received 16 April 2018
Accepted 20 February 2019
Available online 23 February 2019

MSC 2010:
47B38
47E05

Keywords:
Scattering
Resonance
Hybrid manifold
Dirac operator
The paper is devoted to resonances playing an important role in direct and inverse scattering problems. A
model of a relativistic particle on hybrid manifold consisting of a sphere with two semi-infinite wires
attached is considered. The model is based on the theory of self-adjoint extensions of symmetric opera-
tors. Completeness of resonance states in the space of square integrable functions on the sphere is
proved. The proof uses the relation between the completeness and the factorization of the characteristic
function in Sz.-Nagy functional model.
� 2019 Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The problem of resonances is very important in scattering the-
ory. Resonance as a phenomenon is a strong variation of transmis-
sion or reflection in the scattering system. It plays an important
role in scattering description (see, e.g., Geyler et al., 2003;
Edward, 2002; Geyler and Popov, 1996; Exner et al., 2016;
Boitsev et al., 2018; Duclos et al., 2001) Resonance as mathematical
object is a quasi-eigenvalue of the Hamiltonian. It can be treated as
an eigenvalue of some dissipative operator. The resonance effect is
related to closeness of this eigenvalue to the real axis (Lax and
Phillips, 1967; Lax and Phillips, 1976). This operator view allowed
one to develop a few models and asymptotic approaches to the
problem (see, e.g., Hislop and Martinez, 1991; Gadylshin, 1997;
Popov, 1992) and references therein). There is an important
unsolved problem: which is a maximal domain X that ensures
the completeness of the resonance states in L2 Xð Þ? There are only
some examples of solved particular problems (Shushkov, 1985;
Vorobiev and Popov, 2015). Recently, there appeared a few works
concerning to the problem for the Schrödinger operator on the
graph (Popov and Popov, 2017a; Popov et al., 2017) and on a sim-
ple hybrid manifold (Popov and Popov, 2017b). The Schrödinger
operator corresponds to non-relativistic particle. It is interesting
to investigate the completeness property for the relativistic parti-
cle on the same manifolds. In the present paper we consider the
completeness of resonance states for relativistic particle on a
hybrid manifold consisting of a sphere with attached wires. As
for technique of the proof, it is based on using the functional model
(Sz.-Nagy et al., 2010; Nikol’skii, 2012; Khrushchev et al., 1981).
There is an interesting relation between the scattering problem
and functional model discovered in Adamyan and Arov (1965).
Namely, the scattering matrix is the same as the characteristic
function of the functional model. This approach allows one to
reduce the completeness/incompleteness of the system of reso-
nance states to the question about absence/presence of singular
inner function in factorization of the characteristic function for
the functional model. In cases when there are only finite number
of one-dimensional ‘‘ways to infinity” (infinite edges of the quan-
tum graph) the problem reduces to scalar factorization problems
which has an effective criterion.
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2. Dirac operator on a hybrid manifold

Through the present paper we consider the sphere S with two
attached wires Rþ and R�. The behavior of a relativistic spinless
particle is described by the Dirac operator. It has the following
form (see, e.g. Gesztesy and Seba, 1987; Abrikosov, 2002; Blinova
and Popov, 2018):

H� ¼ Hþ ¼ ic�h
d
dx

� r1 þMc2

2
� r3;

on the straight line and

HS ¼ �i�hcr1
@

@h
þ cot h

2

� �
� i�hcr2

sin h
@

@u
þMc2r3;

on the sphere. Here r1; r2; r3 are the Pauli matrices:

r1 ¼ 0 1
1 0

� �
;r2 ¼ 0 �i

i 0

� �
;r3 ¼ 1 0

0 �1

� �
;

u; h are the spherical coordinates, M is the particle mass, c is the
speed of light, �h is the Plank’s constant. The domains of these oper-
ators are as follows:

D H�ð Þ ¼ W1
2 R�ð Þ � C2;D HSð Þ ¼ W1

2 Sð Þ � C2:

The starting operator for our model is the direct sum of the opera-
tors described above

H ¼ H� � HS � Hþ ð1Þ
with the domain

D Hð Þ ¼ W1
2 R�ð Þ � C2

� �
� W1

2 Sð Þ � C2
� �

� W1
2 Rþð Þ � C2

� �
:

The spectral (or scattering) problem on the line reduces to the
equation

mc2 �i�hc d
dx

�i�hc d
dx �mc2

 !
w1

w2

� �
¼ k

w1

w2

� �
The solution of the equation has the form

w1 ¼ C1eikx þ C2e�ikx

w2 ¼ b C1eikx � C2e�ikx
� �(

ð2Þ

Here and throughout below in the text, k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2�m2c4

p
�hc is the wave

number and b ¼ sign kþmc2
� � ffiffiffiffiffiffiffiffiffiffi

k�mc2
kþmc2

q
.

There is a method of switching coupling between manifolds of
different dimensions. It is based on the theory of self-adjoint
extensions of symmetric operators (Geyler et al., 2003; Bruning
and Geyler, 2003). Namely, we use so-called ‘‘restriction-exten
sion” procedure (see, e.g., Grishanov et al., 2016; Eremin et al.,
2012; Mikhailova et al., 2002). One starts with the restriction of
the initial self-adjoint operator on the set of functions vanishing

at coupling points. Let eH�; eHS be such restrictions. The Hamilto-
nian of the systemwith coupling between the wires and the sphere
is constructed as a self-adjoint extension H of the operator

eH ¼ eH� � eHS � eHþ:

It is more convenient to describe the resolvent instead of the oper-
ator. For this purpose, one can use the Krein resolvent formula:

R zð Þ ¼ R0 zð Þ � C zð Þ Q zð Þ þ A½ ��1C� zð Þ: ð3Þ

Here R0 zð Þ and R zð Þ are the resolvents of the initial self-adjoint oper-
ator and the extension H, respectively, A is a Hermitian matrix,

which parameterizes the self-adjoint extension of eH;C zð Þ is the
Krein c-function, Q zð Þ is the Krein Q-function (see, e.g., Geyler and
Popov, 1996). To find Q zð Þ, we should compute the Green’s function.

Green’s function for the Dirac operator on the half-line is known
(Benvegnu and Dabrowski, 1994)

G� x;y;zð Þ¼ i
2�hc

f zð Þ e x�yð Þ
e x�yð Þ f�1 zð Þ

� �
eikjx�yj þ f zð Þ e xþyð Þ

e xþyð Þ f�1 zð Þ

� �
e�ikjxþyj

	 

;

where

f zð Þ ¼ zþMc2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � Mc2

� �2r ; e xð Þ ¼ 1; x P 0;
�1; x < 0:

�

Green’s function on the sphere can be represented in the form
of the conventional eigenfunctions expansion for the resolvent:

GS u;h; ~u;~h;z
� �

¼
Xþ1

n¼0

X
m

1
z�kmn

ak u;hð Þak ~u;~h
� �

ak u;hð Þbk ~u;~h
� �

bk u;hð Þak ~u;~h
� �

bk u;hð Þbk ~u;~h
� �

0BBB@
1CCCA:

ð4Þ
We introduce new variable x; x ¼ cos h, and new functions

akm xð Þ
bkm xð Þ

 !
¼

1� xð Þ12jm�1
2j 1þ xð Þ12jmþ1

2jnkm xð Þ

1� xð Þ12jmþ1
2j 1þ xð Þ12jm�1

2jgkm xð Þ

0@ 1A:

The eigenfunctions corresponding to the eigenvalues kmn,

k ¼ kmn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n nþ jmj þ 1ð Þ þm mþ 1ð Þ þ 1=2

p
; ð5Þ

have the form

nkm xð Þ
gkm xð Þ

� �
¼ Cmn

a P
jm�1

2j;jmþ1
2jð Þ

n xð Þ
Cmn
b P

jmþ1
2j;jm�1

2jð Þ
n xð Þ

0@ 1A;

where P a;bð Þ
n zð Þ are the Jacobi polynomials

P a;bð Þ
n zð Þ ¼ C aþ nþ 1ð Þ

n!C aþ bþ nþ 1ð Þ
Xn
k¼0

n

k

� �
C aþ bþ nþ kþ 1ð Þ

C aþ kþ 1ð Þ ;

where

Cmn
a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n! nþ 2jmjð Þ!p

2jmjþ1
2C nþ jmj þ 1

2

� � ; Cmn
b ¼ isign mkð ÞCmn

a

are the normalization constants.
To construct the resolvent of the extended operator by formula

(3), we choose the matrix A (of size 8 � 8) in the following form

A ¼

M� A� O O

A� O O O

O O O Aþ

O O Aþ Mþ

0BBBBB@

1CCCCCA;

where

A� ¼ 0 a�
a� 0

� �
; M� ¼ 0 l�

l� 0

� �
; O ¼ 0 0

0 0

� �
:

The Krein Q-matrix for the model operator has the form

Q zð Þ ¼

Q� zð Þ O O O

O Q11 zð Þ Q12 zð Þ O

O Q21 zð Þ Q22 zð Þ O

O O O Qþ zð Þ

0BBBBB@

1CCCCCA;
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where

Q� zð Þ ¼ i
�hc

diag
zþMc2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 � Mc2
� �2r ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � Mc2

� �2r
zþMc2

0BBB@
1CCCA ð6Þ

is the Krein Q-matrix for the half-line, Qij

� 
2
i;j¼1 is the Q-matrix for

the sphere (see (4))

Q11¼Q22¼ GS u1;h1; ~u2;~h2;z
� �

�GS u1;h1; ~u2;~h2;z0
� �� �

j u1 ;h1ð Þ¼ ~u2 ;
~h2ð Þ

¼
Xþ1

n¼0

X
m

z0�z
z�kmnð Þ z0�kmnð Þ

ak u;hð Þak ~u;~h
� �

ak u;hð Þbk ~u;~h
� �

bk u;hð Þak ~u;~h
� �

bk u;hð Þbk ~u;~h
� �

0B@
1CA:

ð7Þ

Q12 ¼ Q21 ¼ GS u1; h1; ~u1; ~h1; z
� �

: ð8Þ
3. Scattering problem

3.1. Lax-Phillips approach and functional model

For our purposes, it is convenient to consider the scattering in
the framework of the Lax-Phillips approach (Lax and Phillips,
1967; Lax and Phillips, 1976). Let us briefly describe the method
for the case of the simplest manifold structure (C): Sphere with
two wires attached.

Consider the Cauchy problem for the time-dependent Dirac
equation:

i�hu0t ¼ Hu;

u x;0ð Þ ¼ u0 xð Þ; x 2 C:

�
ð9Þ

Here u x; tð Þ ¼ u1 x; tð Þ
u2 x; tð Þ

� �
. Let E be the Hilbert space of two-

component functions u on the manifold C with the following norm

u1 x; tð Þ
u2 x; tð Þ

� ����� ����2
E

¼
Z
C

ju1 x; tð Þj2 þ ju2 x; tð Þj2
� �

dx:

The solution for non-stationary problem (9) is given by a continu-
ous, one parameter, evolution unitary group U tð Þjt2R of operators
in E:

U tð Þ u1 x;0ð Þ
u2 x;0ð Þ

� �
¼ u1 x; tð Þ

u2 x; tð Þ
� �

:

There exist two orthogonal subspaces D� and Dþ in E, called, corre-
spondingly, the incoming and outgoing subspaces, with the follow-
ing properties.

Definition 3.1. The outgoing subspace Dþ is a subspace of E

having the following properties:
(a) U tð ÞDþ 	 Dþ for t > 0,
(b) \t>0U tð ÞDþ ¼ 0f g,
(c) [t<0U tð ÞDþ ¼ E.
Remark 3.2. D� is defined analogously (with the natural replace-
ment t < 0 instead of t > 0). The subspace D� corresponds to
incoming waves which do not interact with the target (scatterer)
prior to t ¼ 0 while the subspace Dþ corresponds to outgoing
waves which do not interact with the target after t ¼ 0.
Let P� be the orthogonal projection of E onto the orthogonal
complement of D� and Pþ be the orthogonal projection of E onto
the orthogonal complement of Dþ. Consider the family Z tð Þf gjtP0

of operators on E (known as the Lax-Phillips semigroup) defined by

Z tð Þ ¼ PþU tð ÞP�; t P 0:

Lax and Phillips (1967) proved the following theorem.

Theorem 3.3. The operators Z tð Þf gjtP0 annihilate Dþ and D�, map
the orthogonal complement subspace K ¼ E
 D� � Dþð Þ into itself
and form a strongly continuous semigroup (i.e., Z t1ð ÞZ t2ð Þ ¼ Z t1 þ t2ð Þ
for t1; t2 P 0) of contraction operators on K. Furthermore, we have
s-limt!1Z tð Þ ¼ 0.

E can be represented isometrically as the Hilbert space of functions
L2 R;Nð Þ for some Hilbert space N (called the auxiliary Hilbert space) in
such a way that U tð Þ goes to translation to the right by t units and Dþ
is mapped onto L2 Rþ;Nð Þ. This representation is unique up to an
isomorphism of N.

Such a representation is called an outgoing translation repre-
sentation. Analogously, one can obtain an incoming translation
representation related to D�.

The Lax-Phillips scattering operator eS is defined as follows. Sup-
pose Wþ : E ! L2 R;Nð Þ and W� : E ! L2 R;Nð Þ are the mappings of
E onto the outgoing and incoming translation representations,

respectively. The map eS : L2 R;Nð Þ ! L2 R;Nð Þ is defined by the for-
mula (which is equivalent to the standard definition of the scatter-
ing operator)eS ¼ Wþ W�ð Þ�1

:

It is more convenient to work with the Fourier transforms F of the
incoming and outgoing translation representations, respectively,
called the incoming spectral representation and outgoing spectral
representation. According to the Paley-Wiener theorem, in the
incoming spectral representation, D� is represented by H2

þ R;Nð Þ,
i.e., by the space of boundary values on R of functions in the Hardy
space H2

Cþ;Nð Þ of vector-valued functions (with values in N)
defined in the upper half-plane Cþ. Correspondingly, the same the-
orem gives one a symmetric result concerning to the outgoing spec-

tral representation. Accordingly, the scattering operator eS in the
spectral representation is transformed to

S ¼ FeSF�1:

The operator S is realized in the spectral representation as the oper-
ator of multiplication by the operator-valued function
S �ð Þ : R ! B Nð Þ, where B Nð Þ is the space of all bounded linear oper-
ators on N. S �ð Þ is called the Lax-Phillips S-matrix. The following the-
orem (Lax and Phillips, 1967) presents the main properties of S.

Theorem 3.4.

(a) S �ð Þ is the boundary value on R of an operator-valued function
S �ð Þ : Cþ ! B Nð Þ analytic in Cþ,

(b) kS zð Þk 6 1 for every z 2 Cþ,
(c) S Eð Þ; E 2 R, is, pointwise, a unitary operator on N.

The analytic continuation of S �ð Þ from the upper half-plane to
the lower half-plane is constructed in a conventional manner:

S zð Þ ¼ S� zð Þð Þ�1
; Iz < 0:

Thus, S �ð Þ is a meromorphic operator-valued function on the whole
complex plane. Let B be the generator of the semigroup
Z tð Þ : Z tð Þ ¼ exp iBt; t > 0. The eigenvalues of B are called reso-
nances and the corresponding eigenvectors are the resonance
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states. There is a relation between the eigenvalues of B and the
poles of the S-matrix. It is described in the following theorem from
Lax and Phillips (1967).

Theorem 3.5. If Ik < 0, then k belongs to the point spectrum of B if

and only if S� k
� �

has a non-trivial null space.
Remark 3.6. The theorem shows that a pole of the Lax-Phillips S-
matrix at a point k in the lower half-plane is associated with an
eigenvalue k of the generator of the Lax-Phillips semigroup. In
other words, resonance poles of the Lax-Phillips S-matrix corre-
spond to eigenvalues of the Lax-Phillips semigroup with well
defined eigenvectors belonging to the subspace
K ¼ E
 D� � Dþð Þ, which is called the resonance subspace.

Let us return to the problem of the Dirac quantum graph. In this
case, analogously to the Schrödinger graph, one can construct D�
and the spectral representations explicitly. Accordingly, the follow-
ing lemma take place analogously to the corresponding lemmas in
Popov and Popov (2017).

Lemma 3.7. There is a pair of isometric maps T� : E ! L2 R;C2
� �

(the outgoing and incoming spectral representations) having the
following properties:

T�U tð Þ¼eiktT�; TþDþ ¼H2
þ C2� �

; T�D� ¼H2
� C2� �

; T�Dþ ¼SH2
þ C2� �

;

where H2
� is the Hardy space of the upper (lower) half-plane. the

matrix-function S is an inner function in Cþ, and

K� ¼ T�K ¼ H2
þ 
 SH2

þ; T�Z tð ÞjK ¼ PK�e
iktT�jK� :

As an inner operator-function, S can be represented in the form
S ¼ PH, where P is a Blaschke-Potapov product (it is a generaliza-
tion of scalar Blaschke product) and H is a singular inner operator-
function having no zeros inside upper half-plane (Sz.-Nagy et al.,
2010; Nikol’skii, 2012; Khrushchev et al., 1981). The completeness
of the system of resonance states is related to the factorization of
the scattering matrix. The next theorem shows this relation (we
use here the notations described above).
Definition 3.8. The operator is said to be complete if it has a
complete set of the root vectors.
Theorem 3.9. (Completeness criterion from Nikol’skii (2012))The
following statements are equivalent:

1. The operator B is complete.
2. The operator B� is complete.
3. S is a Blaschke-Potapov product.
Remark 3.10. The auxiliary space N in our case is C2.

There is a simple criterion for the absence of the singular inner
factor in the case dimN < 1 (for the general operator case one has
no such simple criterion). Initially, the criterion was for unit disc,
but, of course, we can easily transform it to the case of upper
half-plane.

Theorem 3.11. (Nikol’skii, 2012)Let dimN < 1. The following
statements are equivalent:

1. S is a Blaschke-Potapov product;
Z
2i
2. lim
r!1�0 Cr

ln det S kð Þj j
kþ ið Þ2

dk ¼ 0; ð10Þ

where Cr is the image of fj j ¼ r; r < 1, under the inverse Cayley
transform.

The integration curve can be parameterized as
Cr ¼ R rð Þeit þ iC rð Þjt 2 0;2p½ Þ� 


(see (12) below). For brevity, we
define

s kð Þ ¼ det S kð Þj j;
and after throwing away constants which are irrelevant for conver-
gence, we obtain the final form of the criterion (10), which is con-
venient for us and will be used afterwards:

lim
r!1

Z 2p

0

R rð Þ ln s R rð Þeit þ iC rð Þ� �� �
R rð Þeit þ iC rð Þ þ ið Þ2

dt ¼ 0; ð11Þ

where

C rð Þ ¼ 1þ r2

1� r2
; R rð Þ ¼ 2r

1� r2
: ð12Þ

It should be noted that R ! 1 corresponds to r ! 1� 0.

3.2. Scattering matrix

Further, we consider the particular scattering problem. Let us
take the incoming wave in R� in the form

win ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2� Mc2ð Þ2
q

Mc2
2 �z

0@ 1A
0BB@

1CCAeikx:

The corresponding outgoing wave in Rþ has the form

wout ¼ t zð Þ
1

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2� Mc2ð Þ2

q
Mc2
2 �z

0@ 1A
0BB@

1CCAeikx:

After straightforward algebraic manipulations, one obtains the
following formulas for the transmission and reflection coefficients
T zð Þ ¼ jt zð Þj;R zð Þ ¼ jr zð Þj

t zð Þ ¼ 1
det Q zð Þ þ A½ �

i
�hc

zþMc2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � Mc2

� �2r B71 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � Mc2

� �2r
Mc2

2 � z
B72

0BB@
1CCA

0BBB@

þ
Mc2

2 � z

zþMc2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � Mc2

� �2r
Mc2

2 � z
B81 � B82

0BB@
1CCA
1CCA; ð13Þ

r zð Þ ¼ 1
det Q zð Þ þ A½ �

i
�hc

zþMc2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � Mc2

� �2r B11 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � Mc2

� �2r
Mc2

2 � z
B12

0BB@
1CCA

0BBB@

þ
Mc2

2 � z

zþMc2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � Mc2

� �2r
Mc2

2 � z
B21 � B22

0BB@
1CCA
1CCA; ð14Þ

where Bjp are the corresponding minors of the matrix Q zð Þ þ A. We

are interested in det S kð Þ ¼ t2 � r2; k2 ¼ z.
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Roots and poles of the scattering matrix (correspondingly, of
det S) are symmetric in respect to the real axis. Taking into account
(4) and (5) one concludes that Bij are analytic in the resolvent set.
Correspondingly, poles are given by roots of the denominator
det Q þ Að Þ. This determinant is an analytic function of the spectral
parameter. Hence, the set of roots has no accumulation points in
the complex plane.

Theorem 3.12. If an eigenvalue kmn ¼ k2mn of the Dirac operator on
the sphere is such that the corresponding eigenfunction vanishes at the
both points of wires coupling then the model operator for the

resonator with attached wires has the same eigenvalue kmn ¼ k2mn.
In alternative case, kmn is not an eigenvalue of the model operator but

a neighborhood of the point kmn contains a resonance ek2
mn.

Due to (5) the theorem shows that the resonances form a
sequence which tends to infinity along the real axis and has no
accumulation points.

Consider the condition of singular inner factor absence (11).
Recall that integral (11) is evaluated along a circle (an image of
the circle jzj ¼ r < 1 under the transformation g ¼ �i zþ1

z�1). Singular-
ities (roots of det S) which can appear at the integration path are
integrable. We divide the integration curve into two parts: neigh-

borhood (Lr;n) of singularity ek2
n and the rest of the curve. Singular-

ities are separated and pose near the real axis. Taking into account
()()()(6)–(8) one can see that det S has no exponential growth at
infinity in C. The growth of logarithm near zero is slower than
any inverse power. Correspondingly,

j
Z
Lr;n

ln det S kð Þj j 2ı

kþ ıð Þ2
dkj 6 C

jknjd
; d > 0; ð15Þ

where C does not depend on n. Note that if r ! 1� 0, i.e. R rð Þ ! 1,

then kn ! 1 where ek2
n is that resonance which belongs to the inte-

gration curve. Hence, the limit of such part of the integral is zero.
As for the rest of the curve, the following estimation takes

place:

j ln jdet S kð Þj k2 þ 1
� ��1

j 6 C

jkj þ 1ð Þ1þe
; e > 0: ð16Þ

The length of the path is linear in respect to the path diameter
(i.e. in jkj for large jkj). Note that the diameter of the curve tends to
infinity if r ! 1� 0. One can see (due to (15) and (16)) that the
integral tends to zero if r ! 1� 0. It means that there is no singular
inner factor in det S kð Þ and, hence, we come to the main theorem:

Theorem 3.13. (Main theorem)The system of resonance states of the
operator H is complete in L2 Sð Þ.
Remark 3.14. Eigenstates of the model operator (see Theo-
rem 3.12) which correspond to eigenfunctions of the unperturbed
operator vanishing at the both contact points ‘‘wire-sphere” are
added to the system of resonance states to obtain the
completeness.
4. Conclusion

The obtained result shows that the sphere S gives one a domain
for which one has a completeness of resonance states in L2 Sð Þ. It is
simple to show that this is the maximal domain ensuring the com-
pleteness. Technically, the completeness is related to the definition
of the scattering matrix and incoming and outgoing subspaces. If
one considers a wider domain, i.e. adds some segment 0; a½ � from
semi-infinite edges attached, then the incoming and outgoing sub-
spaces become narrower. As a result, there appears exponential
factor exp ikað Þ in the scattering matrix. It leads to incompleteness
of the resonance states in L2 S [ 0; a½ �ð Þ in accordance with the com-
pleteness criterion.

The same completeness result was obtained earlier for the
Schrödinger operator on the sphere with wires attached (Popov
and Popov, 2017b). The key point for this correlation is given by
a similarity of the properties of the incoming and outgoing sub-
spaces for the Schrödinger and the Dirac cases. It is evident, that
one obtains the same completeness result for the case of any finite
number of semi-infinite wires attached. One can see also that the
spherical form of the 2D manifold is not essential. The requirement
is that the 2D manifold is smooth and bounded.
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