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In this paper, we use the solitary wave ansatz method to carry out the integration of a
new fifth-order nonlinear equation having perturbation terms. The perturbation terms that are con-
sidered are the first-order dispersion term, the power law nonlinearity term, and the fifth- order dis-
persion term. Both bright and dark soliton solutions are obtained. The physical parameters in the

soliton solutions: amplitude, inverse width, and velocity are obtained as functions of the dependent
model coefficients. The conditions of the existence of the derived solitons are presented.
© 2011 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.

1. Introduction

Recent advances in the study of the wave dynamics in nonlin-
ear systems have led to the construction of new integrable
models exhibiting a rich variety of exact solutions with inter-
esting properties. A new class of nonlinear partial differential
equations (NLPDEs) with constant and variable coefficients
that model a lot of physical phenomena has been formulated
depending on the physical situation. In parallel, some other
NLPDEs are generalized which offer a rich knowledge on
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the propagation behavior of waves in nonlinear systems of
all kinds. Examples of many equations that have been gener-
alized are the K(m,n) equation (Rosenau and Hyman, 1993),
the B(m,n) equation (Zhang, 2006; Biswas, 2009b), the
ZK(m,n,k) equation (Inc, 2007), the CKG(m,n,k) (Yan,
2007) and so on.

The problem of finding exact solutions for nonlinear mod-
els is of great importance, both in mathematical and physical
point of view. Based on the exact solutions, we can accurately
analyze the properties of the propagating waves in a given non-
linear system. Several kinds of closed form solutions, including
compactons, peakons, solitons, cuspons, similaritons, etc.,
have been obtained under specific conditions. In particular,
exact solutions of soliton-type are of general physical interest,
because the soliton approach is universal in different fields of
modern physics. Notice that the soliton pulses are observed
in many physics areas, such as fluid mechanics, plasma physics,
optical fibers, hydrodynamics, biology, solid state physics, etc.
It is worth noting that, the existence of such shape-preserving
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waves in the nonlinear systems is the result of exact balance
among dispersion (or diffraction) and the nonlinearity effects.

Recently, in the mathematical physics literature has
appeared a large amount of new powerful methods to calculate
exact solutions to NLPDEs. Among these modern methods of
integrability, we can cite the coupled amplitude-phase formal-
ism (Palacios et al., 1999; Du et al., 1995), the hyperbolic tan-
gent method (Malfliet, 1992), Hirota bilinear method
(Nakkeeran, 2002; Wazwaz, 2010), the sub-ODE method
(Li and Wang, 2007; Triki and Wazwaz, 2009), the solitary
wave ansatz method (Biswas and Milovic, 2010; Saha et al.,
2009; Triki and Wazwaz, 2009; Biswas, 2008a,b, 2009a) and
other methods as well. The solitary wave ansatz has recently
been applied successfully to a wide range of NLPDEs (Biswas
and Milovic, 2010; Saha et al., 2009; Triki and Wazwaz, 2009;
Biswas, 2008a,b, 2009a).

Very recently, Wazwaz (2011a,b) introduced a new fifth-or-
der nonlinear integrable evolution equation in the form

Uit — Upxxxx — (uxul)xx - 4(uxuxl)x = 07 (la)
and a new generalized fifth-order nonlinear integrable equation
Uy — Upxxxx — O‘(“x%)/\-x - ﬁ(uvr“xl)x =0, (1.b)

and derived the multiple soliton solutions for each equation by
using the Hereman—Nuseri method.

In this work we prove that a family of this new evolution
equation having perturbation terms in the form

Upr — QUpxxxx — b(u,\'ut)xx - C(uxuxt)x

= oty + YUy + Orrx (1)

possesses exact bright and dark soliton solutions under certain
parametric conditions. It should be noted that the finding of a
new model supporting soliton-type solutions is a very interest-
ing result and is also helpful for future research.

Here, in (2), a, b, ¢, o, y and ¢ are all constants. The three
perturbation terms on the right-hand side of Eq. (2) represent
the first-order dispersion term, the power law nonlinearity
term, and the fifth-order dispersion term, respectively. Also,
noting that the parameter m indicates the power law nonlinear-
ity. On settinga = 1, b =c=4,anda =y =06 =0, Eq. (2)
reduces to the model Eq. (1.a).

2. Bright solitons

In order to obtain the bright soliton solution to (2), the solitary
wave ansatz is assumed as (Triki and Wazwaz, 2009; Biswas,
2008a; Biswas, 2009a)

v = )
where
7= B(x — 1) 3)

Here A is the soliton amplitude, B is the inverse width of the
soliton and v is the soliton velocity. The unknown index p will
be determined during the course of derivation of the solution
of this Eq. (2).

From (3) and (4), we find
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Substituting (5)—(11) into (2) gives

tanht
cosh’t

P’V AB® — ap’vAB® + 5p° AB> + apAB)

+{=p(p + 1) (p+2)4v*B* +2(av = d)p(p + 1) (p +2)

% (0 + 20+ DAB} -2 (= )+ 1)(p +2)
cosh”™1

1

4B tanht
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cosh’tz
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1
cosh?*?¢
1

cosh¥**¢

— (2b+ )p*(4p* + 5p 4 2)vA* B
+@2b+)p*(p+1)(2p +3)v4A’B

1
m+1 _
AT B = 0. (11)

Now, from (12), equating the exponents (m + 1)p and p + 2
leads to

(m+1)p=p+2, (12)
which gives
2
==, 1
= (13)

From (12) setting the coefficients of tanhrt/cosh”/t and
l/coshz””r functions to zero where j = 0,2,4, since these
are linearly independent functions, gives the following alge-
braic equations:
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P VAB — ap’vAB + 6p° AB® + apAB =0, (14)
—p(p+1)(p+2)AVB +2(av — d)p(p+ 1)(p +2)

x (p* +2p+2)AB° +ypA™T B =0, (15)
—(av=8pp+ 1D +2)(p+3)(p+4)AB =0, (16)
2(2b + c)p*vA*B* =0, (17)
— (2b+ ¢)p*(4p* + 5p + 2)vA’B* = 0, (18)
(2b+c)p*(p+ 1)(2p + 3)v4*B* = 0. (19)

Solving the above system yields

4— {_(m—l—l)(m—o—z) }7 170, (20)
2y
0
V= Z, asﬁ07 (2])
ma oa
Y (22)
and
c=-2b (23)

Eq. (21) shows that solitons will exist for
ay < 0, (24)

if m is an even integer. However, if m is an odd integer there is
no such restriction but the soliton will be pointing downwards.
From (23) we clearly see that the solitons will exist for

ooa < 0. (25)

Thus, finally, the bright soliton solution to the new fifth-order
nonlinear evolution equation with perturbation terms (2) is gi-
ven by

u(x,t) = %, (26)
cosh"[B(x — vt)]

where the amplitude 4 and the width B are given by (21) and

(23) respectively while the velocity of the soliton is given by

(22). Finally the constraint relation between the nonlinear dis-

persion parameters ¢ and b is displayed in (24).

3. Dark solitons

In this section the search is going to be for the topological
1-soliton solution to the new fifth-order nonlinear evolution
equation given by (2). To start off, the hypothesis is given by
(Triki and Wazwaz, 2009)

u(x,t) = A tanh’r, (27)
where
= B(x — 1), (28)

where in (28) and (29), 4 and B are free parameters and v is the
velocity of the wave. Also, the unknown exponent p will be
determined during the course of the derivation of the soliton
solution to (2). Therefore from (28), we get

Uy = —pABY [(p — 1)(p — 2)tanh’ ¢
—{2p* 4+ (p— 1)(p — 2)tanh" 'z
+H2p + (p+ 1) (p +2)}tan" "'z
—(p+1)(p +2)tank’ 1], (29)

—2p* A*B*v[(p + 1)(2p + 3)tanh™” "¢

+(p = 1)(2p - 3)tanh™ *1

—2(4p® + 5p 4 2)tanh¥ %z

~2(4p” — 5p + 2)tanh¥ " + 2(6p” + 1)tanh™7], (30)

(uxu/),xx =

(tattsr), = —pzAzB“v[(p +1)(2p + 3)tanh2p+41'
+(p— 1)(2p — 3)tanh” 4z
—2(4p® + 5p 4 2)tanh¥ ¢
~2(4p” — 5p + 2)tanh¥ 'z + 2(6p” + 1)tanh™7], (31)

u, = pAB(tanh’'¢
u"u, = pA"™*! B(tanh?"" D!

— tanh’™'7), (32)
© — tanh?" 4, (33)

Uior =—pABV{(p—=1)(p—2)(p—3)(p—4)tanh’ ¢
~(p+1)(p+2)(p+3)(p+4)tanh’ ¢
—(p-1)(p-2){2p*+2(p—2)+(p—3)(p—
+Hp+Dp+2){20° +2(0+2)°+(p+3) (0 +
H2-D)p-2{*+ (-2} +4p*
+p(p—1)(p—2)+p(p+1)*(p+2)]tanh’ 'z
R+ Dp+2{r*+(p+2)°} +4p*
+p(p—1)(p—2)+p(p+ 1)2(p+2)]tanh”“r}7 (34)

4)}tanh” ¢
4)}tanh’Ht

and

Usexxx = pAB {(p = 1)(p — 2)(p — 3)(p — 4)tanh’ 1
—(+D(p+2)(p+3)(p+4)tanh’r
—(p =D —2{2" +2(p - 2)°
+(p = 3)(p — 4)tanh" 1t 4 (p + 1) (p + 2){2p*
+2(p+2)° + (p+3)(p + 4)}tanh" ¢
20 - D -2 + (0 -2’} + 4
+p(p = 1)’ (p = 2) + p(p + 1)’ (p + 2)Jtanh” 'z
R+ D+ + p+2)7 + 4
+p(p = 1) (0 = 2) +p(p+ 1*(p + Dltant? '}, (35)
Now substituting (30)—(36) into (2) gives
—pABV|(p—1)(p—2)tanh” 31— {2p?
+(p=1)(p—2)}tanh" v+ {2p% + (p+1)(p+2) tanh 'z
—(p+ D) (p+2)tanh” 1] 4 (av — 8)pAB {(p— 1) (p—2)
x(p=3)(p—Htanh’ 1 — (p+1)(p+2)(p+3)
X (p+4)tanh” 1 — (p—1)(p—2){2p +2(p—2)’
+(p-3)(p—4)tanh’ 1+ (p+ 1) (p+2){2p* +2(p+2)°
+(p+3)(p+4)tanh’ B+ 2(p— 1) (p—2){p*+ (p—2)"}
+4p*+p(p—1)*(p—2)+p(p+1)’(p+2)]tanh’ ¢
— 2+ D) P+2){7 +(p+2)"} +4p* +p(p - 1)’ (P -2)
+p(p+ 1)’ (p+2)|tant’ ' o} + (2b+c)p* 4> B[(p+1)
x (2p+3)tanh 14 (p—1)(2p — 3)tanh® ¢
—2(4p* + 5p+2)tanh? 21 —2(4p? — 5p+2)tanh? 21
+2(6p% + 1)tanh™ 1] —ap A B(tanh” 't — tanh”*' )
—p A" B(tanh? "D~ — tanh? " D+ ) =, (36)



298

H. Triki, A.-M. Wazwaz

From (37), equating the exponents p(m + 1) + 1 and p + 3
gives

pim+1)+1=p+3, (37)
so that
2

It needs to be noted that the same value of p is yielded when
the exponents p(m + 1) —1 and p + 1 are equated with each
other.

Now from (37) the linearly independent functions are
tanh” /¢ for j= +1, +3, +£5 and tanh® %t for k =0,
+2, +4. Hence setting their respective coefficients to zero
yields the following set of equations:

~pABV (p —1)(p - 2)

—(av = )pAB (p—1)(p— 2){2p" +2(p - 2)° (39)
- 3)(p - 4) =0
+pABV{2p* + (p—1)(p - 2)} — opAB

= pABR - Do - D+ (-2 (40)

+apt+pp— 1) (p—2)+p(p+1)(p+2)] =0,
—pABV{2p + (p+ 1)(p+2)} + apAB — ypA™'B
— (av — 5)pABS[2(p + D+ 2){p2 + @+ 2)2} +4p*
+p(p =17 =2)+p(p+ 1) (p+2)] =0,
(41)

PABV (p 4+ D) (p+2) + (av — S)pAB’ (p+ 1) (p + 2)

X {27 +2(p+2)" + (p+3)(p+ 4)} (42)

+9pA™ ' B =0,
(av=0)pAB(p—1)(p=2)(p = 3)(p—4) =0 (43)
—(av=8)pAB (p+ D(p+2)(p+3)(p+4) =0, (44)
(2b+c)p* A*B*v(p + 1)(2p +3) =0, (45)
(2b+ c)p*A*B*v(p — 1)(2p —3) = 0, (46)
—202b + )PP A Bv(4p* + 5p+2) =0, (47)
—202b + )PP A*B*v(4p* — Sp+2) =0, (48)
22b + c)p? A2 B*v(6p* +1) = 0. (49)
By solving (44)—(50), we get

B
== (50)
and
c=-2b (51)
By substituting (51) into (40), we obtain
—pAB*V (p—1)(p—2) =0. (52)

To solve (53), we have considered the following two cases:

3.1. Case 1: p = 1

From (39), this yields
m=2. (53)

Further substitution of p = 1 into (41)—(43), respectively, gives

(3

and

a joa

which shows that solitons will exist for

aod > 0. (56)

3.2. Case 2: p = 2

From (39), this yields
m=1. (57)
By substituting p = 2 into (41)—(43), respectively, we obtain

a joa

which shows that solitons will exist for
aod > 0. (60)

Lastly, we can determine the dark soliton solution for the new
evolution equation with perturbation terms (2) when we sub-
stitute (51), (55) and (56) in (28) with the respective constraint
(54) for the first case of solution or we substitute (51), (59) and
(60) in (28) with the respective constraint (58) for the second
case of solution as

u(x,1) = Atanh%[B(x — )], (61)
which exists provided that axé > 0 and ¢ = —2b.

4. Conclusion

This paper obtains the bright and dark soliton solutions of a
new fifth-order nonlinear equation in presence of perturbation
terms including the power law nonlinearity. The solitary wave
ansatz method is employed to integrate the considered equa-
tion. Parametric conditions for the existence of the soliton
solutions are found. In view of the analysis, we see that the
examined equation is an interesting model for soliton-type
solutions. In addition, we note that the solitary wave ansatz
method is an efficient method for constructing exact soliton
solutions for such nonlinear evolution equation that includes
perturbation terms.
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