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Abstract Extraction of useful and discriminative information from fluorescence microscopy pro-

tein images is a challenging task in the field of machine learning and pattern recognition.

Gray Level Co-occurrence Matrix (GLCM) was among the first methods developed for textural

analysis, which holds information of intensity distribution as well as the respective distance of inten-

sity levels in the original image. In this paper, several GLCMs are constructed with different quan-

tization levels for different values of offset d. Haralick descriptors are extracted from each GLCM,

which are then utilized to train support vector machines. The final output is obtained through the

majority voting scheme. Hybrid models from different individual feature spaces have also been con-

structed. Additionally, Correlation-based Feature Selection (CFS) is performed to extract the most

useful features from the hybrid models.

The empirical analysis reveals that varying the value of parameter d causes the GLCM to extract

different information from a particular fluorescence microscopy image. Hence, producing diversi-

fied co-occurrence matrices for same images. Similarly, using more quantization levels for con-

structing a GLCM generates informative and discriminative features for the classification phase.

Furthermore, CFS has significantly reduced the feature space dimensionality achieving almost

the same accuracy as full feature space.

The performance of the proposed system is validated using three benchmark datasets including

HeLa (99.6%), CHO (100%), and LOCATE Endogenous (100%) datasets. It is anticipated that

GLCM is still an efficient technique for pattern analysis in the field of bioinformatics and compu-

tational biology as well as might be helpful in drug discovery related applications.
� 2016 The Author. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Cell plays critical role in the existence of life. Proteins are the

basic building blocks of all cells and are responsible to execute
almost all cellular functions (Alberts et al., 2002; Cooper,
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2000). The understanding of protein functions is among the
top priorities in the field of biological sciences. Subcellular
localization of proteins in a cell is one of the key characteristics

of proteins. Exact localization of a particular protein delivers
precious information about the functionality of a protein
under various circumstances (Boland et al., 1998; Chebira

et al., 2007). Predicting the precise location of a protein, for
example, may convey useful information during the drug dis-
covery process. Further, the efficiency of a particular drug,

in treating a particular disease, may be estimated by accurate
prediction of subcellular localization. Similarly, doctors may
detect a disease at its earlier stages upon having the knowledge
of accurate localization of a particular protein. The current

trends, in advancement of imaging technologies, are producing
a huge amount of cell images for drug discovery (Chen et al.,
2006; Newberg et al., 2009). However, analysis of these images

for classification in traditional ways is laborious, error prone
and almost impossible. Therefore, automated systems are
needed to classify these images accurately, timely and reliably.

During the past decade, researchers have been developing
Bioinformatics based automated systems for the classification
of protein subcellular localization images (Chen et al., 2006;

Chen and Li, 2013; Glory and Murphy, 2007; Li et al., 2012;
Nanni et al., 2013). These systems are capable of recognizing
and classifying major protein compartments by utilizing
numerical descriptions of fluorescence microscopy images

through various machine learning techniques (Boland and
Murphy, 2001; Chebira et al., 2007; Nanni et al., 2010a;
Tahir et al., 2012).

In this regards, Nanni et al. have introduced a random sub-
space based model for selecting local binary and ternary pat-
terns having high variance. A support vector machine is

trained to classify protein images into various classes (Nanni
et al., 2010b). Srinivasa et al. have extracted Haralick textures
and morphological features from images at the sub-bands and

then K-means algorithm is applied to these features separately
at sub-bands to classify protein images. Final prediction is
obtained by combining these individual predictions through
weighting strategy (Srinivasa et al., 2006). Similarly, Nanni

et al. have proposed a model based on the ensemble of Leven-
berg–Marquardt neural network and AdaBoost algorithm
using random subspace of numerous hybrid feature sets. The

decisions of the two ensembles are fused through sum rule
(Nanni et al., 2010c). Likewise, Murphy et al. have proposed
a back propagation neural network based model, which classi-

fies protein subcellular localization images into various classes
using Haralick textures, Zernike moments, and morphological
features (Murphy et al., 2003). Tscherepanow et al. have uti-
lized various feature extraction strategies in conjunction with

a modified version of fuzzy ARTMAP (SFAM) as a classifica-
tion algorithm. The feature extraction techniques include pat-
tern spectra, fractal features, histogram based features,

Zernike moments, and region dependent texture features
(Tscherepanow et al., 2008). Tahir et al. have developed
SVM-SubLoc (Tahir et al., 2012), which constructed the fea-

ture spaces in different sub-bands of the original image and
then various support vector machines are trained using the
extracted features. The decisions of the individual support vec-

tor machines are combined through the majority voting tech-
nique. In another work, Tahir et al. have proposed RF-
SubLoc (Tahir et al., 2013) prediction system that utilized
the Synthetic Minority Oversampling Technique to oversam-
ple the original samples and then utilized the oversampled
samples to train Random Forest classifier for the classification
of protein images.

Literature reveals that GLCM is the focus of many
researchers in the field of computer vision, pattern recognition
and machine learning (Chen et al., 2009; Gelzinis et al., 2007;

Mitrea et al., 2012; Walker et al., 2003). It is among the most
primitive techniques for texture based analysis. These research-
ers have adopted different approaches for extracting informa-

tion from GLCM matrices.
In this paper, GLCM based Haralick textural features are

utilized to address the challenging problem of protein subcellu-
lar localization. The focus of our research is to analyze GLCM

for its discriminative capability regarding different values of
offset parameter d against a particular quantization level.
Results showed the effectiveness of GLCM based texture anal-

ysis for protein subcellular localization images. We also uti-
lized CFS in order to extract the most informative features
from the full feature space. Empirical analysis reveals that fea-

ture selection efficiently reduced the feature space while keep-
ing the discriminative power intact.

Rest of the paper is organized as follows. Section 2 presents

materials and methods. Section 3 analyzes the simulation
results. Section 4 presents the comparative analysis. Section 5
draws the conclusive remarks.

2. Materials and methods

In this section, we first discuss the datasets that are used to
assess the performance of the proposed algorithm. Next, the

proposed prediction system is discussed. Then, the feature
extraction technique is elaborated in detail. The hybrid models
and feature selection are also discussed toward the end of this

section.

2.1. Datasets

Three benchmark protein image datasets have been utilized to
assess the performance of our proposed method. These include
2D HeLa (Boland and Murphy, 2001), CHO (Lin et al., 2007),

and LOCATE Endogenous (Nanni et al., 2010a) datasets. The
cells in HeLa dataset, comprised of 862 images, are distributed
in 10 different classes including Actin Filaments, Endosome,
Endoplasmic Reticulum, Golgi Giantin, Golgi GPP130, Lyso-

some, Microtubules, Mitochondria, Nucleolus, and Nucleus.
CHO dataset seizes 668 protein images categorized in 8 unique
classes, which include Actin, Endoplasmic Reticulum, Golgi,

Microtubule, Mitochondria, Nucleolus, Nucleus, and Peroxi-
some. The third dataset, LOCATE Endogenous contains 502
protein images and comprised of 10 classes, which are Actin,

Endosome, Endoplasmic Reticulum, Golgi, Lysosome, Micro-
tubule, Mitochondria, Nucleus, Peroxisome, and Plasma
Membrane.

2.2. The proposed prediction system

Fig. 1 demonstrates the proposed GLCM-SubLoc prediction
system. The input image is first quantized to the required num-

ber of gray levels. Then for a particular value of offset param-
eter d, a GLCM is constructed along four directions:
horizontal, vertical, diagonal, and off-diagonal as shown in



Figure 1 The proposed GLCM-SubLoc prediction system.
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Fig. 2. Next, features are extracted from each of the four
GLCMs separately. Then features from horizontal GLCM
are averaged with the features from vertical directional

GLCM. Similarly, the features from diagonal GLCM are aver-
aged with the features from off-diagonal GLCM. The final fea-
ture space is constructed by concatenating the two averaged

feature spaces.
From this point onward, a GLCM constructed with a par-

ticular quantization level g and offset value d is referred to as

GLCMd
g where different values of g considered in this paper

are 4, 8, 12, 16, 20, and 24 whereas values of d are from the

set 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, and 15. Hardg indi-

cates Haralick features extracted from a GLCMd
g.

Hence, against a single gray level value there are fifteen
values of the offset parameter d producing fifteen different
feature spaces, which are then utilized to train fifteen support

vector machines. These results are combined through the
majority voting scheme to produce the final output. Besides,
various hybrid models are also constructed from different

individual feature spaces. In order to select informative
features from these hybrid models, we incorporated
Correlation-based Feature Selection (CFS) technique. More-
over, support vector machines are trained using the hybrid

as well as CFS based selected feature spaces for comparison
purpose.
Figure 2 Feature vectors for GLCM along four different directi
2.3. Feature extraction strategy

Haralick texture features, extracted from various GLCMs are
utilized in the development of GLCM-SubLoc prediction sys-
tem. GLCM maintains co-occurring frequency information

of two pixels in a particular relation. This relationship is
defined by two parameters: the offset d and orientation h. In
the current study, we used d= 1, 2, 3, . . ., 15 and h = 0�,
45�, 90�, and 135�. GLCM matrices obtained with different

(d, h) combinations capture different information from the
images. This fact is evident from Fig. 3 where GLCMs con-
structed with different value of d portrays different informa-

tion. These GLCMs are constructed for the Actin protein
image from HeLa dataset, shown in Fig. 3.

Consequently, the extracted features from these GLCM

matrices possess diversified information related to textural
appearance of images. The size of GLCM is dependent upon
the gray level values held by an image and not on the image

size itself. Let I be an image with N gray levels, the GLCM
for image I will be an N-by-N dimensional matrix. This
GLCM, at location (i, j), records the number of times two
intensity levels i and j co-occur in the image I at distance d

from each other at orientation h. GLCM, of an image I with
r rows, c columns and offset (dx, dy), can be represented math-
ematically as given in Eq. (1).

GLCMdx ;dyði;jÞ ¼
Xr

p¼1

Xc

q¼1

1; if Iðp;qÞ ¼ i and Iðpþ dx;qþ dyÞ ¼ j

0; otherwise

�

ð1Þ
However, the GLCM is required to hold the probability

rather than the count of the co-occurrence of any two intensi-
ties. Therefore, the GLCM entries are transformed so that they

indicate probabilities. For this purpose, the number of times a
particular combination of intensities occurs is divided by the
total number of possible outcomes, in order to obtain proba-
bilities. These probabilities are not true probabilities rather

these are approximations. True probabilities require continu-
ous values whereas the entries of GLCM are discrete values.
Eq. (2) is used to transform a GLCM into approximate

probabilities.
ons including: horizontal, vertical, diagonal, and off-diagonal.



Figure 3 GLCMs are constructed with varying values of parameter d for protein ‘‘original image” at the top.

32 M. Tahir
Pði; jÞ ¼ Vi;jPNg

i¼1

PNg

j¼1Vi;j

ð2Þ

Here i and j represent the row and column of a GLCM,
Vði; jÞ indicates the total number of co-occurrences of intensity
levels i and j whereas the summation in the denominator is the

total number of co-occurrences of (i, j) (Do-Hong et al., 2010;
Haralick, 1979).

One important issue related to GLCM is its size, which

depends upon the gray levels of an image. For different com-
binations of (d, h), there are four different possible GLCM
matrices. Images, with a large number of gray levels, produce
GLCM matrices that have huge amount of data storage

requirements. Therefore, images are usually quantized to a
low number of gray levels. However, reducing gray levels in
an image may result in loss of texture information. Further,

with a low number of gray levels homogeneity is more likely
in such images (Chaddad et al., 2011; Liang and Malm,
2012). On the other hand, a large number of gray levels possess
more detailed information for discrimination among patterns.
However, this results in GLCM matrices, which are more

sparse in nature and likely to have large vacancy level.
In this connection, we explore the effect of various quantiza-

tion levels in conjunction with different values of offset param-

eter d on the information capturing capability of GLCM for
fluorescence microscopy protein images. Distinct quantization
levels as well as different values of offset parameter d result in

different GLCMmatrices and therefore, their produced feature
spaces are diverse in nature. The occupancy level of GLCM is
also affected by smooth image regions. For homogeneous
images, the resultant GLCM will have higher count for some

indices and most of the entries will correspond to zero. In such
cases, the constructed GLCM should be based on distant neigh-
bors (Srinivasan and Shobha, 2008). Therefore, using larger

values of offset parameter d in constructing GLCMs for such
images will help in extracting more information.
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2.4. Haralick texture features

Haralick (Haralick, 1979) proposed the extraction of 14 statisti-
cal measures from a GLCM, which can better discriminate the
texture. These features found many applications related to tex-

ture analysis and pattern classification (Hamilton et al., 2006;
Haralick, 1979; Nanni et al., 2010c; Rathore et al., 2014). In this
work, we utilized 13 of them including inertia, entropy, energy,
correlation, inverse differencemoment, sum variance, sum aver-

age, sum entropy, difference variance, difference average, differ-
ence entropy and two information measures of correlation. As
discussed in Section 2.2, feature spaces from GLCMV are aver-

aged with GLCMH and GLCMD with GLCMoD. The resultant
averaged feature spaces are then concatenated with each other
to produce 26-D feature space for each protein image.

2.5. The hybrid model

In order to develop efficient classification systems, sometimes

different individual feature spaces are combined to collectively
utilize their discriminative power. In this study, a number of
hybrid models have been developed by concatenating different
feature spaces. The detail is given as under:

� Har1–524 is composed of Har124;Har224;Har324;Har424;
�

Har524
�

producing 130-D feature space.
� Har6–1024 is composed of Har624;Har724;Har824;Har924;
�

Har1024
�
.

This also produces feature space of 130-D.

� Har11–1524 is composed of Har1124;Har1224;Har1324;Har1424;
�

Har1524
�
.

Here the output feature space dimension is also 130-D.

� Har1–1524 is yielded by the concatenation of Har1–524 ;Har6–1024 ;

Har11–1524 . Here 390-D feature space is produced, since this

hybrid model is the combination of all the 15 feature spaces
for 24 gray levels in the original image.

Such models are developed for all the three datasets.

2.6. Correlation-based Feature Selection

In machine learning, feature selection is a preprocessing tech-
nique usually applied on data to select the most informative
and discriminative features from the full feature space. In this

way, redundant and irrelevant information is removed.
In this paper, we adopted CFS feature selection technique

that is developed using the concept of filter based feature selec-

tion strategy (Hall and Smith, 1999). The concept behind the
development of CFS is that selected features have high corre-
lation with the target class whereas less correlation with each

other. CFS utilizes the forward best first search strategy to
search the useful features from the full feature space by start-
ing with the empty set. It stops its operations when five consec-
utive subsets with no improvements are produced.

In this paper, we applied CFS on the Har1–1524 hybrid model

for all the three datasets on the intention that first combine the
discriminative power of all the feature spaces and then enhance
this power by removing the redundant information. In this

connection, from 390-D full feature space, CFS produced 33-
D selected feature space for HeLa dataset, 40-D selected fea-
ture space for CHO dataset, and 31-D selected feature space
for LOCATE Endogenous dataset.
2.7. Classification and ensemble generation

SVM is a well known and efficient classifier utilized by many
researchers for addressing various problems in different appli-
cation domains (Rathore et al., 2015; Rehman et al., 2013). In

the current work, SVM with RBF kernel is trained using Hardg
for d= 1, 2, 3, . . ., 15 and g = 4, 8, 12, 16, 20, and 24. These

classifications will be referred to as SVMd
g in this text where

SVMd
g is trained using Hardg feature space.

The individual classifications using all the feature spaces are
recorded. In order to enhance the prediction performance of
the proposed prediction system further, the individual classifi-
cation results have been combined using Eq. (3).

Majority Vote ¼ SVM1
g � SVM2

g � . . . � SVM15
g ð3Þ

where * is the integration operator and Majority_Vote is the
final output of the ensemble classifier. While constructing an

ensemble, value of g will be same for all the values of d as
shown in this equation. The complete procedure of Major-
ity_Vote is given as follows. Let us assume the classification

results of individual classifiers are SVM1
g; SVM

2
g; . . . ; SVM

n
g 2

CL1;CL2; . . . ;CLmgf , where SVM1
g; SVM

2
g; . . . ; SVM

n
g indicate

individual base classifiers and CL1;CL2; . . . ;CLm represent
labels of protein classes. The output of the ensemble classifier
is given as in Eq. (4).

Yi ¼
Xn

i¼1

dðSVMi
g;CLjÞ for j ¼ 1; 2; . . . ; n where n ¼ 15

ð4Þ
where

dðSVMi
g;CLjÞ ¼ 1 if SVMi

g 2 CLj

0 otherwise

(

The final output is obtained through the integration of indi-

vidual prediction results using the majority voting scheme as
given in Eq. (5).

YMajority Vote ¼ max Y1;Y2; . . . ;Yngf ð5Þ
where YMajority Vote is the output prediction of the ensemble.

Ensembles are built corresponding to all the offset values of
every gray level quantization. The best ensemble is selected for
building the final model of GLCM-SubLoc protein classifica-

tion system.
3. Results and discussion

Results are presented and analyzed in this section. Accuracy
(Acc), sensitivity (Sen), specificity (Spe), MCC, F-score, and
Q statistics are employed to evaluate the performance of the

proposed GLCM-SubLoc prediction system. We utilized 10-
fold cross validation protocol to validate the performance of
the system.

3.1. Performance analysis of GLCM-SubLoc for HeLa dataset

The performance accuracies of the proposed GLCM-SubLoc
prediction system are shown in Table 1. The first column indi-

cates the value of the parameter d, which is the distance



Table 1 Performance of individual SVMs using Hardg features for different d and g values utilizing HeLa dataset.

d G

4 8 12 16 20 24

1 69.3 75.7 78.1 79.5 80.8 80.9

2 70.1 72.7 75.6 78.3 81.2 80.9

3 69.2 72.1 75.9 78.8 80.8 80.7

4 69.8 71.5 76.1 78.3 80.2 80.2

5 66.9 73.2 75.8 78.3 80.9 80.9

6 68.2 71.9 74.8 76.6 78.8 79.8

7 66.2 70.8 74.8 76.7 79.9 79.8

8 66.0 71.1 74.7 76.9 79.3 79.9

9 65.3 71.1 74.8 76.9 79.6 80.3

10 67.4 71.5 74.3 77.9 81.2 81.0

11 65.6 71.4 75.2 78.6 80.5 80.8

12 67.0 70.9 73.8 77.8 80.2 80.6

13 67.7 71.1 73.8 76.7 79.4 79.9

14 66.0 71.2 75.0 77.6 79.5 81.3

15 66.0 71.4 75.9 77.4 80.1 81.2
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between the pixels to be checked for co-occurrence in con-
structing GLCM. The rest of the columns show the accuracy

values yielded by GLCM-SubLoc utilizing the features from

GLCMd
g for different d and g values.

It is observed that using the same gray level for different

values of distance d varying from 1 to 15, there is very little
variation in the accuracy values. The best values are obtained
for d= 1 in all cases except for the gray level value of 24 where

the best value of accuracy is yielded for d = 14. On the other
hand, gradual enhancement in the accuracy values for the
same value of d with varying gray levels is observed. The dif-

ference is initially higher, however, for gray levels 16, 20 and
24, this difference is small.

Almost same performance by the prediction system for dif-
ferent values of d shows that the patterns and information pre-

sent in HeLa protein images is identical. The co-occurrence
distribution of different intensities over the protein image is
leading the classifier to show the same performance. However,

when more information is added to the GLCM by varying the
gray levels, the prediction performance of proposed model is
enhanced. For the gray levels 20 and 24, the prediction perfor-

mance has not been improved due to the redundancy in the
information preserved by the two GLCMs from which the fea-
tures are extracted.

Supplementary Table 1 demonstrates the detailed results

for HeLa dataset. The performance of the proposed prediction
system is demonstrated through sensitivity, specificity, MCC
and F-score for different gray levels and for different values

of GLCM offset parameter. Quite good performance is
revealed from the quantitative analysis of the presented predic-
Table 2 Performance of the proposed prediction system using the

Features Acc Sen

Har1–524
86.5 89.6

Har6–1024
80.1 84.2

Har11–1524
80.2 84.5

Har1–1524
88.2 90.5

The bold values show the highest achieved accuracy.
tion values. The performance measures validate the good per-
formance of the proposed prediction system.

The performance of the proposed prediction system using
different hybrid models is shown in Table 2. The hybrid mod-
els have shown improved performance in some cases whereas

comparable performance in some other.

The Har1�5
24 hybrid model has shown 5.6% improvement

over the individual features for gray level value g= 24 and d
values 1–5 where the highest accuracy in the range from 1 to

5 in Table 1 is 80.9%. However, Har6�10
24 hybrid model has

shown low accuracy compared to the accuracies in the range

of 6–10 for d values against gray level value g = 24 where
the highest accuracy in this range is 81.0%. Similarly, the per-

formance of Har11–1524 hybrid model is lower than the individual

accuracies in the range 11–15 for different d values for the

same gray level value. On the other hand, the performance

of the proposed prediction system using Har1–1524 hybrid model

is 88.2%, which is 6.9% higher than the highest accuracy in the
range 1–15 for different d values. This reveals that the hybrid
model has enhanced the prediction performance of the pro-

posed prediction system compared to the individual feature
spaces. The performance of the proposed prediction system
using the CFS based selected feature space has shown compa-

rable performance that is 88.3% compared to the Har1–1524

hybrid model. However, the dimensionality of the CFS based
features is 33-D compared to the 390-D dimensionality of the
full feature space. The results obtained through the majority
voting scheme for HeLa dataset are presented in Table 3.

For each gray level value under consideration there are
hybrid models for HeLa dataset.

Spe MCC F-score

86.1 0.56 0.58

79.6 0.44 0.46

79.7 0.44 0.47

87.9 0.59 0.61



Table 3 Ensemble performance of GLCM-SubLoc for HeLa dataset.

G

4 8 12 16 20 24

Acc 91.0 96.8 98.9 99.6 99.5 99.6

Q-value 0.33 0.25 0.21 0.21 0.24 0.25

Figure 4 Performance comparison for different models of HeLa

dataset.
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GLCMs for different values of offset parameter d ranging
from 1 to 15 as discussed earlier. Ensemble is constructed from

the results of 15 classifications for the same gray level. For
example, taking into account GLCM of 4 gray levels, there
are 15 values for the parameter d hence producing 15 classifi-

cations. In order to form an ensemble, the 15 classifications
for the GLCM of 4 gray levels are employed.
Table 4 Performance of individual support vector machines using H

d g

4 8 12

1 73.9 80.0 84.5

2 75.5 80.6 85.0

3 77.8 80.5 86.5

4 79.7 82.7 86.6

5 79.7 83.8 87.1

6 80.8 85.1 86.5

7 80.8 84.1 86.9

8 81.4 86.2 87.1

9 81.2 85.4 87.4

10 81.1 86.5 88.3

11 81.5 85.3 87.1

12 82.0 85.4 88.0

13 82.0 85.1 87.4

14 82.1 85.3 87.8

15 81.5 85.6 87.7

The bold values show the highest achieved accuracy.
The highest ensemble accuracy is reported for the ensemble
constructed for the gray levels 16 and 24. However, the similar-

ity measure Q-statistic shows low similarity among the mem-
bers of the ensemble using GLCMs of 16 gray levels. This
indicates that GLCMs of 16 gray levels produce informative

and discriminative features for the classification stage. Fig. 4

shows the comparison among the Har1–524 , Har6–1024 , Har11–1524 ,

Har1–1524 , the CFS based selected feature space, and the results

of the majority voting based ensemble.
The highest performance among different approaches for

HeLa dataset is achieved through the majority voting scheme,

which is yielded by integrating the decisions of different sup-
port vector machines.

3.2. Performance analysis of GLCM-SubLoc prediction system
for CHO dataset

Performance assessments of the proposed prediction system

for CHO dataset are presented in Table 4. The first column
shows different values for the GLCM offset parameter d
whereas the rest of the columns show accuracy values for the

Hardg features extracted from GLCMd
g.

It is observed that for a certain gray level, the accuracy
value keeps increasing for the higher value of GLCM offset

parameter d. This indicates that the co-occurring intensity val-
ues at larger distances possess more discriminative information
compared to smaller values of d for this particular dataset.

That is why the discriminative power of the classification sys-
tem is enhanced with larger distances. Similarly, for a certain
ardg features for different d and g values utilizing CHO dataset.

16 20 24

85.7 83.8 83.6

85.4 85.6 86.0

86.0 85.9 86.2

86.0 87.8 87.4

87.4 87.2 87.8

87.4 87.8 88.0

88.0 88.0 87.8

88.4 88.1 89.2

88.1 87.8 88.9

88.3 88.3 89.3

88.1 88.1 88.7

88.0 88.7 89.0

87.8 88.9 88.9

87.8 89.0 89.0

88.1 89.3 89.3



Table 5 Performance of the proposed prediction system using the hybrid models for CHO dataset.

Features Acc Sen Spe MCC F-score

Har1–524
88.9 88.3 89.0 0.68 0.73

Har6–1024
89.2 89.6 89.0 0.69 0.74

Har11–1524
89.2 89.3 89.2 0.69 0.74

Har1–1524
90.7 91.3 90.5 0.73 0.77

The bold values show the highest achieved accuracy.

Table 6 Ensemble performance of GLCM-SubLoc for CHO dataset.

Gray levels

4 8 12 16 20 24

Acc 94.6 98.6 100 100 99.8 99.8

Q-value 0.34 0.21 0.12 0.12 0.19 0.20

The bold values show the highest achieved accuracy.

Figure 5 Performance comparison for different models of CHO

dataset.
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value of the distance parameter d, higher accuracies are
achieved while utilizing features from GLCMs with more gray

levels. In these results, GLCMs with gray level value of 16
might be enough for feature extraction.

This shows that prior to the development of a prediction

model for classification, protein images coming from a partic-
ular source should be analyzed first for their patterns. Here, it
is observed that higher accuracies are achieved for CHO data-

set when the value of GLCM distance parameter d is 8 or
above for all the gray levels presented in Table 4. Detailed
results for CHO dataset are shown in Supplementary Table 2
where the performance achieved is demonstrated in terms of

sensitivity, specificity, MCC and F-score. The assessments
shown with different measures validate the performance of
the proposed prediction model.

Hybrid models, utilized by the proposed prediction system,
have shown improvement over the individual feature spaces as

shown in Table 5. Har1–1524 achieved 1.4% higher accuracy com-

pared to the highest accuracy achieved by the same features for

d= 15 and g = 24 as shown in Table 4.
However, CFS based feature selection has also shown com-

parable performance against the hybrid models. This shows
that feature selection or hybridization is unable to improve

the performance of the prediction system. However, CFS
based feature selection has reduced the dimensionality of the
feature space from 390-D to 40-D only. On the other hand,

the majority voting based ensemble outperformed all the
adopted approaches in predicting protein localization from
CHO dataset.

Table 6 presents the ensemble performance for CHO data-
set. The first row shows the ensemble accuracy whereas the sec-
ond row indicates the value for Q-statistic.

The highest ensemble accuracy is reported for the GLCMs

of 12 and 16 gray levels where the accuracy value is 100% in
both cases. The Q-statistic value shows the highest diversity
for the members of these two ensembles. The GLCMs of gray

level 12 and 16 for different values of distance parameter d
produce feature spaces with diversified information, hence pro-
ducing classifications of higher diversities. This leads to the

higher performance of the ensemble classifier.
Fig. 5 shows the comparison among the Har1–524 , Har6–1024 ,

Har11–1524 , Har1–1524 , the CFS based selected feature space, and

the results of the majority voting based ensemble.

It is evident from Fig. 5 that majority voting based ensem-
ble has shown significant performance in classifying protein
images from fluorescence microscopy images of CHO dataset.

3.3. Performance analysis of GLCM-SubLoc prediction system
for LOCATE Endogenous dataset

Performance accuracies of the proposed GLCM-SubLoc pre-

diction system are presented in Table 7 for LOCATE Endoge-
nous dataset. The first column shows different values of
distance parameter d for GLCM construction whereas the

remaining columns show the accuracy values achieved using
features extracted from GLCM with different gray levels vary-
ing from 4 to 24.



Table 7 Performance of individual support vector machines using Hardg features for different d and g values utilizing LOCATE

Endogenous dataset.

d g

4 8 12 16 20 24

1 79.0 84.8 86.8 88.6 88.2 88.2

2 82.0 86.4 87.8 88.2 88.4 88.8

3 82.0 85.8 88.4 89.2 87.8 88.4

4 79.4 87.6 87.6 88.4 86.8 87.2

5 77.6 86.8 86.8 87.2 85.8 87.0

6 78.4 87.2 86.8 87.2 86.0 86.6

7 76.8 87.2 86.8 87.2 85.4 87.2

8 78.0 87.2 86.4 86.2 85.2 86.2

9 78.8 85.8 85.4 84.4 85.2 86.4

10 80.6 85.8 85.6 84.6 84.0 85.8

11 80.4 85.2 87.6 85.2 85.0 87.2

12 80.6 86.0 85.6 84.6 84.6 85.0

13 80.8 86.0 86.2 85.2 85.4 86.2

14 80.4 86.0 85.6 86.2 85.0 85.2

15 79.4 86.2 86.6 86.2 86.2 86.4

The bold values show the highest achieved accuracy.

Table 8 Performance of the proposed prediction system using the hybrid models for LOCATE Endogenous dataset.

Features Acc Sen Spe MCC F-score

Har1–524
90.6 91.5 90.5 0.64 0.65

Har6–1024
88.2 89.2 88.1 0.58 0.59

Har11–1524
87.2 88.5 87.1 0.56 0.57

Har1–1524
92.6 92.0 92.6 0.69 0.71

The bold values show the highest achieved accuracy.

Table 9 Ensemble performance of GLCM-SubLoc for LOCATE Endogenous dataset.

Gray levels

4 8 12 16 20 24

Acc 99.8 100 99.8 99.6 100 100

Q-value 0.20 0.18 0.23 0.26 0.20 0.14
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The results presented show that there is some improvement
in the classification accuracy for smaller values of d. For exam-

ple, performance is better using the Har34, Har312, and Har316 fea-

tures from GLCM3
4, GLCM3

12, and GLCM3
16, respectively. The

highest accuracy values using gray level values of 4, 12, and 16
with d= 3 are 82.0%, 88.4%, and 89.2%, respectively. Fur-

ther increasing the value of d for a certain gray level did not
enhance the performance. This shows that for LOCATE
Endogenous dataset, a reasonable value of d might be between

2 and 8 inclusive. For other values, the performance is usually
observed to be degraded.

As far as gray levels are concerned, 16 gray levels are suffi-
cient to generate informative features from respective GLCMs

for protein images of LOCATE Endogenous dataset as can be
observed from the results shown in Table 7.

The detailed performance predictions are provided in Sup-

plementary Table 3, which demonstrates the performance of
the prediction system in terms of sensitivity, specificity, MCC
and F-score. The performance predictions show that the pro-

posed prediction system has efficiently classified the protein
images from LOCATE Endogenous dataset into different
classes.

The hybrid models for LOCATE Endogenous dataset, as
shown in Table 8, have shown improvement over individual
feature spaces. The highest performance accuracy 92.6% is

achieved by the proposed prediction system using Har1–1524

hybrid model. This signifies the collective discrimination power

of all the individual feature spaces.
Similarly, the CFS based selected feature space has shown

slight improvement over Har1–1524 hybrid model, which is good

achievement as far as dimensionality of the feature space is con-

cerned. The CFS based feature space dimensionality is only 31-
D achieving 92.2% accuracy as compared to the 390-D dimen-
sionality of the full feature space achieving 92.6% accuracy.



Table 10 Performance comparison with other published

work.

Method Accuracy

HeLa CHO LOCATE

Chebira et al. (2007) 95.4 – –

Lin et al. (2007) 93.6 94.7 –

Nanni et al. (2010c) 97.5 – –

Nanni et al. (2010a) 95.8 – 99.5

Nanni et al. (2010b) 93.2 – 92.9

Tahir et al. (2012) 99.7 – 99.8

Tahir et al. (2013) – 96.5 –

Tahir et al. (2014) 100 95

GLCM-SubLoc 99.65 100 100
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The ensemble performance for LOCATE Endogenous
dataset is shown in Table 9. The highest ensemble accuracies
are recorded for GLCMs of 8, 20 and 24 gray levels. However,

the highest diversity is achieved for the members of ensemble
at gray levels 24 as shown by the Q-statistic value of 0.14.

This indicates that for this particular dataset, GLCMs

might be constructed with either 8, 20 or 24 gray levels. The

comparison among Har1–524 , Har6–1024 , Har11–1524 , Har1–1524 , the

CFS based selected feature space, and the results of the major-
ity voting based ensemble is shown in Fig. 6.

The performance comparison for LOCATE Endogenous
dataset reveals that majority voting based ensemble outper-
formed other approaches.

4. Comparative analysis

Comparison of the proposed prediction system with state-of-
the-art techniques is shown in Table 10. Chebira et al. (2007)

have proposed a prediction system that utilized features from
multi-resolution subspaces. This system achieved 95.4% pre-
diction accuracy for HeLa dataset. Lin et al. (2007) have pro-

posed a variant of AdaBoost learning algorithm that yielded
93.6% and 94.7% prediction accuracies for HeLa and CHO
datasets, respectively. Nanni et al. (2010c) developed a predic-

tion system, based on the fusion of two ensembles, which
yielded 97.5% performance accuracy for HeLa dataset. In
another approach, Nanni et al. (2010a) have identified some
novel features in conjunction with random subspace of Neural

Networks for classifying protein images from HeLa and
LOCATE datasets. Their prediction system achieved 95.8%
and 99.5% accuracies for HeLa and LOCATE Endogenous

datasets, respectively.
Similarly, Nanni et al. (2010b) have developed an ensemble

of SVMs trained on a random subset of features extracted

from binary and ternary patterns. Their prediction system
obtained 93.2% performance accuracy for HeLa dataset
whereas 92.9% performance accuracy for LOCATE Endoge-

nous dataset.
Figure 6 Performance comparison for different models of

LOCATE Endogenous dataset.
Furthermore, Tahir et al. have shown the importance of
feature extraction in multi-resolution subspaces in conjunction

with majority voting based ensemble (Tahir et al., 2012), which
achieved 99.7% and 99.8% prediction accuracies for HeLa
and LOCATE Endogenous datasets, respectively. In another

approach, Tahir et al. have shown empirically that introducing
synthetic samples in the feature space increases the classifier’s
bias toward the minority class and ultimately enhances the pre-
diction accuracy (Tahir et al., 2013). This system achieved

96.5% accuracy for CHO dataset. Similarly, another approach
proposed by Tahir et al. (2014) has achieved 100% prediction
accuracy for HeLa and 95.0% accuracy for CHO dataset.

The prediction system proposed in this work has achieved
99.6% prediction accuracy for HeLa dataset and 100% accu-
racy for each of the CHO and LOCATE Endogenous datasets.

5. Conclusive remarks

In this paper, we performed extensive empirical analysis of flu-

orescence microscopy protein images using GLCM based tex-
tural features. We combined different approaches as well as
adapted feature selection strategy to remove redundant and

irrelevant information. The proposed method was further
enhanced by applying the majority voting based technique in
decision making. We showed that considering different values
of the offset parameter d in the construction of GLCM plays a

key role in the extraction of diversified information from fluo-
rescence microscopy protein images. Similarly, we provided
empirical evidence that quantization levels up to 24 gray level

values is sufficient to transform an image into an informative
GLCM.

We also utilized correlation based feature selection in order

to extract most useful information from the full feature space
as well as to reduce the dimensionality. The simulation results
showed that performance of the proposed prediction system

was consistent with reduced feature spaces. We utilized three
benchmark protein image datasets in order to validate the sig-
nificance of GLCM-SubLoc prediction system, hence provid-
ing empirical evidence on the generalization capability of the

proposed system. The results are compared against state-of-
the-art approaches.

As far as our point of view is concerned, the most precious

finding of this work is successful demonstration of the effec-
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tiveness of the features extracted from GLCM while consider-
ing different offset values and various quantization levels.
Thus opening new avenues for other researches in the field

to explore novel techniques for extracting information from
GLCM matrices.
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