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Thin films of a light emitting polymer Poly[2-methoxy-5-(30 ,70-dimethyloctyloxy)-1,4-phenyleneviny
lene] (MDMO-PPV) were prepared by spin coating on glass substrates using different casting solvents;
tetrahydrofuran (THF), chloroform, cyclohexanone, chlorobenzene, xylene, and toluene. The films were
characterized by atomic force microscope (AFM), UV–vis absorption and photoluminescence (PL) spectra.
The obtained results showed that the casting solvent plays an important role in modifying the film mor-
phology and forming of molecular aggregates. The values of the fluorescence quantum yield and Huang-
Rhys factor showed the best interchain interaction and PL properties by increasing solvent polarity.
� 2017 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Conjugated polymers which are known as organic semiconduc-
tors have a tremendous interest in the field of development of
organic optoelectronic applications such as light emitting diodes
(LEDs), field effect transistors (FETs), plastic photovoltaic (PV) cells,
lasers, sensors, phototransistors and luminescent solar concentra-
tors (LSCs) (Skotheim, 1997; Sirringhaus et al., 2000; Coakley and
McGehee, 2004; McGehee and Heeger, 2000; Gutierrez et al.,
2016). The main advantages of conjugated polymers as compared
with inorganic or molecular organic materials for optical applica-
tions are lower production costs, high flexibility, the possibility
of uniformly covering large areas by inexpensive solution process-
ing techniques such as spin coating, drop casting, printing and doc-
tor blade techniques (Kim et al., 2007; Gündüz, 2015; Krebs, 2009).
Additionally, there are many ways to fine-tune their optical and
electrical properties by varying the composition and structure by
their hybridization with inorganic nanomaterials like nanoparti-
cles, nanowires, nanotubes, fullerenes, etc. (Mohan et al., 2017;
Feng et al., 2017; Ren et al., 2010). Moreover, conjugated polymers
have been employed as laser gain media for optical amplifier appli-
cations with excellent fine tuning in the visible range of the elec-
tromagnetic spectrum (Lampert et al., 2017; Frolov et al., 1997;
Frolov et al., 2000). Scheme 1. shows the structure of Poly[2-meth
oxy-5-(30,70-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-
PPV) which is a soluble conjugated polymer used in the fabrication
of LEDs and as donor material in the fabrication of bulk-
heterojunction PV cells (Wienk et al., 2003; van Hal et al., 2003;
Rispens et al., 2003; Martens et al., 2003; Mandoc et al., 2007).
Many parameters may affect the photophysical properties and sur-
face morphology of the polymer: such as composition, solvent type
and the thickness of the active layer (Mohan et al., 2017;
Hadziioannou and Van Hutten, 2000; Traiphol et al., 2006). It has
been reported that the charge transport is highly anisotropic in
conducting polymers, as it is strongly dependent on microstruc-
ture, molecular weight, polydispersity which all affect the mor-
phology and carrier mobility in these materials (Österbacka et al.,
2000; Brown et al., 2001). As relating the microstructure, morphol-
ogy, and transport properties in polymeric semiconductors are
necessary for the modification of the light emitting properties
and the scientific development and successful commercialization
of a wide range of electrical and optical applications (Salleo,
2007; Salleo et al., 2004; Rahmanudin and Sivula, 2017). As well,
several studies revealed that the morphology of photoactive layers
could strongly affect the efficiency and performance of conjugated
polymer PV cells (Rahmanudin and Sivula, 2017; van Bavel et al.,
2010; Liu et al., 2017).
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In the present study, we investigated the effect of solvent type
on the morphology and spectroscopic properties of spin-coated
MDMO-PPV films casted from different solvent types. It has been
reported that the casting solvent can strongly affect the film mor-
phology, optical and charge transport properties of conjugated
polymers due to various conformations and orientations of the
polymeric chain (Mohan et al., 2017; Hadziioannou and Van
Hutten, 2000; Traiphol et al., 2006). This study will be helpful to
modify the methodology for optimization of the film morphology
to enhance the photon trapping efficiency of the polymeric active
layer (Park et al., 2009; Liang et al., 2010; Yao et al., 2008).
Fig. 1. Optical absorption spectra for MDMO-PPV films casted from different
solvents.
2. Experimental techniques

2.1. Thin-film preparation

Conjugated polymer MDMO-PPV was obtained from Sigma-
Aldrich Co.(USA), It was dissolved with concentration 0.01 g/mL
in HPLC grade solvents namely Cyclohexanone, toluene, xylene,
chloroform, chlorobenzene and tetrahydrofuran (THF). High-
quality microscope slides were cleaned by ultrasonic waves for
10 minutes using acetone and isopropyl alcohol respectively. After
that, all the polymer solutions were casted on the glass and spin-
coated at 2000 rpm for 40 s. The thicknesses of all MDMO-PPV thin
films were measured by Fizeau Fringe experiment and found to be
about (200 ± 10 nm).

2.2. Measurements

Fully automated Atomic force microscope, AFM, (NT-MDT SOL-
VER NEXT, Russia), was used for morphological characterization of
MDMO-PPV films. The absorption and specular reflection spectra of
the prepared MDMO-PPV thin films were recorded in the wave-
length range (300–1000 nm) were obtained using a double beam
spectrophotometer model type (JASCO, V-570, UV–VIS-NIR, Japan).
Steady-state photoluminescence spectra of the films were
recorded in the wavelength range (400–800 nm) using a spec-
trofluorimeter type model (SCHIMADZU RF-5301 PC, Japan);
equipped with a temperature regulator in the range (0–60 �C).

3. Results & discussion

Optical absorption spectra of MDMO-PPV films are shown in
Fig. 1. for different solvents at room temperature in the spectral
range (350–600 nm). The observed steadiness of the absorption
spectra reflects the homogeneity of the polymer molecules in all
the prepared films (El-Bashir et al., 2017). It is also noticed that
the absorption edge is red shifted by increasing solvent polarity
as indicated by the values dipole factor, D, obtained from
Koenhen and Smolders (1975) and listed in Table 1. The absorption
edge was analyzed for all the investigated films by calculating the
absorption coefficient a (Koenhen and Smolders, 1975; Fox, 2002;
Pankove, 2012),

a ¼ 2:303A=d ð1Þ
where A is the absorbance, and d is the film thickness. According to
Tauc model (Tauc, 1970), the fundamental absorption coefficient, a,
is related to photon energy, E, as the band gap energy can be deter-
mined by plotting (aE)1/m versus E where the value of m depending
on the nature of the transition. In the current study, the best least
square fitting was obtained by taking m = 1/2 according to the fol-
lowing relation (Koenhen and Smolders, 1975; Fox, 2002;
Pankove, 2012),

aE ¼ BðE� EgdÞm ð2Þ
where B is constant, and Egd is the energy of the direct and indirect
interband transitions respectively (Koenhen and Smolders, 1975;
Fox, 2002; Pankove, 2012). According to Eq. (2), the values of Egd
were determined for all the investigated MDMO-PPV films as pre-
sented by Fig. 2 and listed in Table 1 which shows no significant
decrease in the values of Egd is observed. This behavior demon-
strates that the solvent type does not strongly alter the bond length
and quinoidal character and subsequently the is not decreased
(Brédas, 1985; Zheng et al., 2014). The stability of the band struc-
ture of MDMO-PPV films by changing the solvent type is well corre-
lated with the photoluminescence (PL) characteristics as will be
explained in the following section.

Fig. 3 shows the normalized PL spectra of all the prepared
MDMO-PPV films recorded in the spectral range (500–700 nm) at
room temperature. The PL peak is composed of three vibronic tran-
sitions which are equally spaced in energy and assigned to 0–0, 0–
1 and 0–2 transitions, respectively(Nguyen et al., 2001). It was sta-
ted that the shape and position of the PL spectra are controlled by
(i) the conformational changes of polymeric chains that modify the
effective size of the conjugation; (ii) the formation of aggregates
and (iii) the interaction with the solvent, producing solvatochromic
effects (Quan et al., 2006). The values of the maximum emission
wavelength, ke, were determined and listed in Table 1; an inspec-
tion of the table shows a slight blue shift by increasing the polarity
of the solvent. From this study, it is clearly observed that the PL
intensity is decreased for aromatic solvents this can be due to
the aggregation of MDMO-PPV molecules that happens more read-
ily in aromatic solvents which interact preferentially with the aro-
matic backbone of the polymer chain. On the other hand, for
nonaromatic solvents such as THF are more likely to interact with
the side groups of the polymer thus causing the polymer chains to
form tight coils and thus reducing the formation of aggregates
(Nguyen et al., 2000).

Stokeś shift which is a measure of the spectral overlap between
the absorption and PL spectra can be calculated from Lakowicz and
Masters (2008),

Dks ¼ kf � ka ð3Þ
where ka and kf are the wavelength values of the absorption and PL
maxima the respectively.

The fluorescence quantum yield,Uf, is the most important char-
acteristic of fluorophores as the ratio of the number of the emitted
photons to the number absorbed photons (Lakowicz and Masters,
2008),



Table 1
Spectroscopic and optical properties of MDMO-PPV films compared to the dipole factor of the casting solvents D.

Solvent Cyclohexanone Toluene Xylene Chloroform Chlorobenzene THF

D 0 0.31 0.45 1.15 1.54 1.75
ka (nm) 481 488 489 490 495 493
ke (nm) 550 553 554 553 556 551
Dks (nm) 69 65 65 63 61 58
Uf (S) 0.27 0.3 0.32 0.33 0.36 0.42
HR factor 0.45 0.62 0.73 0.81 0.92 0.95
Eg (eV) 2.296 2.275 2.272 2.266 2.263 2.258
Ea (kJ/mol.) 0.448 0.536 0.617 0.65 0.671 1.169
n 1.97 2.06 2.27 2.34 2.59 2.68
g% 87.27 87.4 89.8 90.89 92.26 92.75

Fig. 2. Direct interband transitions for MDMO-PPV films casted from different
solvents.

Fig. 3. Fluorescence spectra for MDMO-PPV films casted from different solvents.
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Uf ðsÞ ¼ Uf ðrÞAr

As

n2
s

n2
r

R
Fsð�tÞd�tR
Frð�tÞd�t ð4Þ
where the integrals over F represent the area of the corrected fluo-
rescence spectrum, A is the absorbance value of the excitation
wavelength, and n is the refractive index; the subscripts s and r
refer to sample and reference. The values of Uf were calculated
for MDMO-PPV films taking Rhodamine 6G dissolved in methanol
as the reference fluorophore which showed the best suitable spec-
tral overlap; this solution has a standard value of Uf equal to 0.94
(Demas and Crosby, 1971). It is clear from Table 1 shows that the
values of Uf are increased by increasing the solvent polarity; this
increase is accompanied by a decrease in the values of Dks. This
behavior is mainly attributed to the formation of higher aggregates
which have small values of Uf by reducing the solvent polarity. The
strength of aggregation depends on the nature of the fluorophore,
the polarity of the solvent and the other factors related to the
preparation conditions (El-Bashir et al., 2017; Nguyen et al.,
1999). Aggregates of polymeric semiconductors exhibit two classes
of electronic interactions that occur between chains. The impact of
such interactions on the photophysical properties of polymeric
films can be understood using the concepts of J- and H-
aggregation. In conjugated polymers, the intrachain through-bond
interactions lead to the formation of J-aggregates, whereas
interchain Coulombic interactions lead to the formation of
H-aggregates (Spano and Silva, 2014). The emissive property of
conjugated polymer films is controlled by a competition between
J-aggregate and H-aggregate interactions in the conjugated
p-systems (Baghgar et al., 2014; Lemmer et al., 1995).

The concept of Huang–Rhys factor (HR) correlates with the con-
formational disorder and indicates the strength of polymer inter-
chain interaction (Mohan et al., 2017).

Theoretically, the relative intensity of 0? n transition can be
calculated from the following equation (Mohan et al., 2017; Quan
et al., 2006; Oliveira et al., 2003; Moreno et al., 1992),

I0�n ¼ e�HRðHRÞn
n!

ð5Þ

where n is an index of the vibrational level, and HR is the Huang–
Rhys factor, which represents the strength of the electron phonon
interaction. Fig. 4. Shows the normalized PL spectra expressed by
wavenumber scale and fitted by two Gaussian functions. The rela-
tive intensities of the 0–0 and 0–1 vibronic bands were taken from
the experimental curves and deconvoluted in two vibronic bands as
shown in Fig. 4. using software origin 2017. It is noted that the val-
ues of HR values are increased by increasing the dipole factor of the
solvent. This means that the greater polymer interchain interaction
is obtained for THF and the lower for cyclohexanone as the higher
value of HR factor the stronger of polymer interchain interaction
and vice versa (Mohan et al., 2017). Moreover, the increase of the
conformational disorder produces different types of changes to
the spectral profile, such as (i) the broadening of PL spectrum and
(ii) shorter conjugation lengths leading to a blue shift of PL spec-
trum (Quan et al., 2006). This study revealed that decreasing the
solvent polarity causes the loosely coiling of the polymer chains
that cause the formation of aggregates, on the other hand, tighter
coiling of polymeric chains leads to the formation of smaller aggre-
gates (Mohan et al., 2017; Oliveira et al., 2003; Brédas et al., 1996;
Basko and Conwell, 2002). Thus, it can be expected that THF-based
films have the smallest aggregates due to its high dipole factor



Fig. 4. Normalized fluorescence spectra of MDMO-PPV film casted from chloro-
form; (The red curves show Gaussian multipeak fitting).
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compared to other solvents. These results can be confirmed by AFM
study which showed a direct evidence of the dependence of poly-
mer aggregation on solvent polarity. Fig. 5. Shows topographic
AFM images clearly showed the larger aggregates for
cyclohexanone-based films and smaller aggregates for THF based
films. These photos suggest that the degree of homogeneity of poly-
mer chains is increased by increasing the dipole factor of solvents.
Based on this discussion, it is clear that the interchain interaction,
conjugation length and the coiling of the polymer chains are varied
for different solvents. This interchain interaction can either be hap-
pened between multiple chromophores of the same polymer chain
through coiling/bending back of polymer or between chromophores
of different polymer chains. For THF-based films, the polymer
chains are not very tightly coiled, so some polymer chains are inter-
acting with each other, and the degree of disorder is decreased
(Mohan et al., 2017).

The temperature effect on the PL spectra of MDMO-PPV films
was studied in the temperature range (0-60 �C), the normalized
PL spectra of THF based MDMO-PPV film is shown in Fig. 6. which
represents a representative behavior of the investigated films. It is
observed that the PL spectra are blue shifted by increasing the tem-
perature; for the reason that in conjugated polymers, the increase
of thermal disorder on heating leads to a decrease in the conjuga-
tion length and thereby to a blue-shift and vice versa (Gupta et al.,
2002). Additionally; it is observed that as the temperature
increases PL intensity decreases to a value IT of its initial value Io,
this can be ascribed to the increased phonon assisted relaxation
processes as the electronic excitation energy can be dissipated by
the vibrational modes existing in the energy levels of the fluo-
rophores (Sumitani et al., 1977). This means that thermally acti-
vated processes for fluorescence deactivation from the excited
singlet state can be occurred by varying the temperature (El-
Bashir et al., 2016). This energy transfer occurs at a rate KET(T)
which is plotted in Fig. 7. according to Arrhenius equation (El-
Bashir et al., 2016; Alfassi et al., 1990),

KETðTÞ ¼ ðKETÞT1exp � Ea

RT

� �
ð6Þ

where Io and IT are the PL intensities at zero and ‘‘T” temperatures
respectively; ‘‘R” is the universal gas constant and Ea is the activa-
tion energy of the transfer process; Arrhenius plot of ln(Io/IT) versus
103/T shows a good linear fit for all the investigated MDMO-PPV
films. The calculated values of Ea are listed in Table 1; these values
indicate that the thermal stability is improved by increasing the
dipole factor of solvent. This can be attributed to the increase of
solvent polarity raised the dipole concentration which requires
higher energy to deactivate the photoluminescence process. After
shelf-aging of the films for about 24 h; the absorbance is retained
to its initial value before heating; this points to the stability of
MDMO-PPV films if used in outdoor PV conversion applications at
normal atmospheric conditions.

In the transparent range, according to the calculated values of
attenuation coefficient k, the refractive index n can be calculated
by Fox (2002), El-Bashir (2012),

R ¼ ðn� 1Þ2=ðnþ 1Þ2 ð7Þ
where R is the film reflectance recorded from the specular
reflection spectra. Fig. 8. shows the spectral dependence of the
refractive index n for all MDMO-PPV films in the wavelength
range (300–1000 nm). It is clearly noted that the values of n show
normal dispersion according to Cauchy’s formula (Fox, 2002;
El-Bashir, 2012),

dn
dk

¼ �2B
k3

ð8Þ

The values of the refractive index, n, are determined in the
normal dispersion region (around 1000 nm) and listed in Table 1.
It is noted that the refractive index of MDMO-PPV films is
increased by increasing the polarity of the solvent; this increase
can be explained by the increase of the mean molecular polariz-
ability �a according to Lorentz-Lorentz equation (Fox, 2002;
El-Bashir, 2012),

n2 � 1
n2 þ 2

Mn

q
¼ 4

3
pNA�a ð9Þ

whereMn is the molecular weight of the polymer, q is the molecular
density and NA is Avogadro’s number. This indicates that increasing
the solvent dipole factor enlarged the number of atomic refractions
due to the increase of the dipole concentration.

The trapping efficiency g, which is the fraction of photons that
can be trapped inside the film, was calculated from the refractive
index n of the films from the formula (El-Bashir et al., 2016; El-
Bashir, 2012; El-Bashir et al., 2014; El-Shaarawy et al., 2007),

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

n2

r
ð10Þ

The values of g were calculated and listed in Table 1. It is clear
that g is increased from 87.27% to 92.75% by increasing the polar-
ity of the solvent. This can be attributed to the increase of the
dipole factor that caused the decrease of the critical angle and
reduces the fraction of fluorescent photons escaped from the crit-
ical cones and accordingly increasing solar energy conversion effi-
ciency (Dienel et al., 2010; Swartz et al., 1977; Batchelder et al.,
1981; Debije and Verbunt, 2012). This reveals that THF-based
MDMO-PPV films provides the optimum trapping of a larger frac-
tion of photons and consequently improves the optical guiding
properties for various applications such as luminescent solar
concentrators.

4. Conclusion

From this study, we used spin coating technique for solution
casted polymer films; this method is cheap and more accurate to
study the optical properties and morphology of MDMO-PPV films.
The study showed a slight reduction in the direct band gap, Egd, by
increasing the dipole factor of the solvent. The variations in the
film morphology and photophysical properties by changing the
solvent polarity can be ascribed to the variation in the interchain



Fig. 5. AFM images for MDMO-PPV films casted from (a) THF and (b) Cyclohexanone; the bright spots indicate polymer aggregates.
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interaction which is directly related to the size of the molecular
aggregates. The probability of this molecular aggregation is
increased by decreasing the polarity of the casting solvent as the
nonaromatic solvents such as THF can interact with the side groups
of the polymer backbone. This feature caused the polymer chains
to form tight coils and minimize the exposure of the backbone thus
reducing the formation of aggregates leading to broader PL spectra
due to greater conformation disorder. Moreover, a remarkable
enhancement of the light guiding properties was attained by
increasing solvent polarity; as the refractive index and photon,
trapping efficiency is increased. It was found that the optimum
film quality and photophysical properties can be achieved by
increasing the dipole factor of the casting solvent and the maxi-
mum calculated value of photon trapping efficiency,g, was
92.75% and varied as gCH<gTOL<gXY<gCF<gCB<gTHF. It can be con-
cluded that the proper choice of the casting solvent can strongly
affect the film morphology, light emission and optical properties
of MDMO-PPV films.



Fig. 6. Temperature dependence of PL intensity for THF-based MDMO-PPV film.

Fig. 7. Relative (Io/IT) Fluorescence intensity as a function of temperature for
MDMO-PPV films prepared using different solvents.

Fig. 8. Refractive index for MDMO-PPV films casted from different solvents. The
dependence of refractive index on the dipole factor of solvents (inset). Sheme1.
Chemical structure of conjugated polymer MDMO-PPV.
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