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a b s t r a c t

Pedalium murex, a less-utilized traditional plant, has high lipid content, which ranges from 21 mg/gfw
(milligram per gram fresh weight) in leaf, 32 mg/gfw in stem and 19 mg/gfw in callus. Lipids from differ-
ent parts of the plant were extracted and employed for biodiesel production. Al2O3-CaO nanocatalyst was
synthesized by the classical Sol-gel method, characterized by XRD, HR-SEM, and was applied for biodiesel
production. In transesterification, the influence of methanol-lipid was evaluated by varying the ratio from
1:6 to 1:16, and the FAME converted yield was calculated to be 60% using Gas chromatography. The bio-
mass was subjected to lipid extraction and was then used for the synthesis of AgNPs, analyzed through
the UV–Visible absorption spectrum, XRD, HR-SEM, and SAED. AgNPs of Pedalium murex plant extract
were examined for their antimicrobial activity against various bacterial pathogens such as
Staphylococcus aureus, Klebsiella pneumonia, Bacillus subtilis and Escherichia coli. AgNPs showed the best
antibacterial activity against E. coli at 5.0 mM concentration. This study is promising in the identification
of a cheap source for biodiesel production with the added advantage of antimicrobial drug formulation
from the medicinal plant Pedalium murex.
� 2019 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Biodiesel has the great alternation instead of fossil fuel and
great attention because of environmental compatibility and
biodegradability (Aarthy et al., 2014; Chen et al., 2012; Reyero
et al., 2014). P. murex is a member of Pedaliaceae commonly known
as ‘Gokshru’ and is distributed throughout the world including,
India, Srilanka, Paksistan and Africa (Patel et al., 2011). The plant
materials were utilized by local people as an analgesic and
antipyretic (Patel et al., 2011). Because of its important biological
activities, medicinal applications and high lipid content in various
parts of P. murex, we had chosen it as a suitable candidate for
biomass utilization (SHARMA, n.d.). Evaluation of dietary effects
of P. murex ethanolic extract was reported to be 9.5 kcal/g
(Jobling, 1983; Ojha et al., 2014). Bligh and dyer method was
applied with simple modifications such as the reduced quantity
of solvent and obtained the maximum amount of lipids from differ-
ent parts (leaf, stem, and callus) of P. murex (Ewald et al., 1998).
The heterogeneous catalyst alumina supported calcium oxide
was used in this study and was classically synthesized by a sol–
gel method as described by Umdu et al. (2009). Among the solid
base catalysts, CaO is economical with several advantages such
as long catalytic lifetime, mild reaction conditions, high basicity,
high activity and uses as a potent catalyst for effective synthesis
of biodiesel (Wu et al., 2012). Adding Al2O3 as a supportive mate-
rial will increase catalytic activity by many folds, especially suit-
able stability and dispersion properties with surface-enhanced
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reactant interactions (Galadima and Muraza, 2014). Whereas the
Al2O3-CaO system yields the most promising activity because of
higher basicity and site concentration (Umdu et al., 2009). The
solid biomass (after lipid extraction) was utilized to synthesize sil-
ver nanoparticles (AgNPs). AgNPs possess antibacterial activity
against types of pathogens because of Ag ions (Arokiyaraj et al.,
2015; Moosavi et al., 2015; Valsalam et al., 2019a, 2019b;
Gurusamy et al., 2019). In this study, the antimicrobial potential
of synthesized AgNPs were screened against highly pathogenic
bacteria such as, Staphylococcus aureus, Escherichia coli, Bacillus sub-
tilis and Klebsilla pneumonia. This study detailed an optimized
extraction of lipid content from different parts (leaf, stem and cal-
lus) of the commonly denoted traditional plant (P. murex) for the
production of biodiesel catalyzed by Al2O3-CaO. The remaining bio-
mass (after lipid extraction) was utilized for the synthesis of AgNPs
with antibacterial potentiality.
2. Materials and methods

2.1. Preparation of catalyst and analytical technique

In this study catalyst was prepared as suggested by Yoldas
(1975) and was used to synthesize CaO doped Al2O3 using Alu-
minum isopropoxide and Calcium nitrate as a precursor with 1:1
ratio. 10.2 g of Aluminum isopropoxide was added into 50 ml of
0.5 M HNO3, where placed in a reflux condenser with a silicon
oil magnetic stirrer heating reactor at 85 �C for 1 h. To this, 8.2 g
of Calcium nitrate was carefully added and continuously stirred till
the formation of the gelly mixture. After 2 h of stirring, excess
water was removed, and the gel was dried for 18 h at 120 �C and
calcined for 6 h at 500 �C. The crystalline nature of synthesized cat-
alysts were analyzed through X-ray diffraction and average crys-
talline size were calculated by debye scherrer equation. The
foremost identifications and surface morphology characters of syn-
thesized nanocatalyst was investigated by using High-resolution
Scanning electron microscope (HR-SEM) incorporated with
Energy-dispersive X-ray spectroscopy (EDAX).

2.2. Lipid extraction

P. murex plant was collected near the science campus of Ala-
gappa University, Karaikudi Tamil Nadu, India (latitude:
10.094004, longitude: 78.785493). P. murex contains high lipid
content ranging from 21 mg/gfw (milligram per gram fresh weight
of tissues) in leaf, 32 mg/gfw in stem and 19 mg/gfw in callus
(SHARMA, n.d.) were individually extracted as described by
Kumari et al. (2011) with simple modification. All the analysis
was made with 4 g of ground plant tissues. Using this method,
lipids were successfully extracted from all parts of the P. murex
plant and were transesterified by using Al2O3-CaO nanocatalyst.
The biomass was washed with double distilled water after lipid
extraction distilled water, further air dried and used for AgNPs syn-
thesis for potential antibacterial application.

2.3. Transesterification of P. murex and FAME analysis

Transesterification process was mainly affected by reaction
temperature, reaction time, methanol to oil molar ratio and cata-
lyst concentration (Banković-Ilić et al., 2017; Baskar et al., 2017;
Baskar and Soumiya, 2016; Sivaprakash et al., 2019; Zabeti et al.,
2010). Optimization of different parameters were carried for FAME
production like methanol-oil ratio from 1:6, 1:8, 1:10, 1:12, 1:14 &
1:16, different catalyst concentration from 5, 10, 15, 20, 25 & 30 wt
% with reaction time frame of 2, 3, 4, 5, 6 & 7 h and different tem-
peratures ranged between 40 �C and 90 �C with 10 �C interval.
Methanol and lipid content were mixed vigorously in the reflux
container under magnetic stirrer; Al2O3-CaO composite was grad-
ually added to the above mixer. 2 ml of formaldehyde was added
to 2 ml of supernatant and was characterized by gas chromatogra-
phy (Shimadzu 2010, Japan). This instrument was equipped with a
capillary column (105 m, 0.32 mm ID, 0.20 lm film thickness) and
detected using a Flame ionization detector (FID). Injector tempera-
ture was maintained as 225 �C, whereas detector temperature was
adjusted as 250 �C, respectively. 1 ml of the sample was carefully
injected onto a FAMEs-RTX-2330 column (105.0 m length) using
split mode (35:1) and the flow rate was 184.9 ml/min. GC solution
software was used for a combination of peak areas and FAME was
identified with internal standards.
2.4. Synthesis of AgNPs from remaining P. murex biomass

1 g of dried biomass (leaf, stems & callus) was kept in 30 ml of
distilled water at 80 �C for 20 min. AgNO3 was prepared at 1 mM
concentration and was kept on magnetic stirrer for about 2 h at
80 �C for continuous stirring. Then, 10 ml of different extracted leaf
biomass was added slowly with continuous stirring. The same pro-
cedure was followed to extract from stem and callus. AgNPs forma-
tion was confirmed by the appearance of brown color. P. murex
contains various phytochemicals, including flavonoids, phenolics,
terpenoids, glycosides and saponins and these phytochemicals
involved in AgNPs synthesis (Sharma et al., 2012). Such functional
groups provide a good reduction of silver ions to AgNps (Vijayan
et al., 2014). The maximum absorption spectra of the synthesized
AgNPs were characterized using UV–Visible spectroscopy (Shi-
madzu, Japan) and X-ray diffraction analysis (X’Pert PRO analytical
X-ray diffractometer). The size of the synthesized NPs and mor-
phology was analyzed by HR-SEM images. AgNPs sample was
dropped over carbon-coated copper grid with 200 mesh size and
allowed to dry before observation. The functional components of
AgNPs were detected by Fourier Transform infrared spectroscopy
(FT-IR) between 400 and 4000 nm (Nicolet 380 FTIR spectrometer).
2.5. AgNPs and its antibacterial property

The synthesized AgNPs were tested for its antibacterial activity
at three different concentrations (5 mg/ml, 10 mg/ml, and 15 mg/ml)
against bacterial cultures (K. pneumonia, B. subtilis, E. coli and
S. aureus) procured from MTCC. In this study, Mueller Hinton Agar
was used for the determination of antibacterial activity as
described by Ruparelia et al. (2008). All plates were incubated at
37 �C for 24 h and inhibitory activities were observed. The results
were compared with standard antibiotics.
3. Results and discussion

To the best of our knowledge, there is no report on the biodiesel
production from P. murex by using heterogeneous catalysts. In this
study, Al2O3 and CaO4 were synthesized individually, compared
with Al2O3-CaO and XRD pattern is described Fig. 1. Fig. 1(a) shows
Al2O3-CaO mixed metal oxide. Al2O3 and CaO4 were perfectly
matched with ICDD card no: 000020921, 000210155, respectively
(Fig. 1b and c).

The peak broadening, average particle size of Al2O3, CaO4 and
Al2O3-CaO were calculated by Debey–Scherrer formula, Al2O3 hav-
ing particle size of 30 nm is formed in hexagonal crystal system,
CaO4 pure and Al2O3-CaO were amorphous in nature, thus particle
size were 20–30 nm. Small peaks integration (>5 nm) (Umdu et al.,
2009) in XRD is improbable and thickness of crystalline substance
must be large to calculate the average size of CaO and Al2O3-CaO.



Fig. 1. a) XRD Pattern of Al2O3-CaOnanocomposite b) CaO4 c) Al2O3 nanocomposite.
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In our study we observed spherical rod-shaped mixed oxide cata-
lyst in HR-SEM (Fig. 2), but it could not be observed in XRD.

Heterogeneous basic catalysts will selectively yield higher
products than other catalysts in free fatty acids and the yield of
biodiesel will decrease when froth formation occurs (Lam et al.,
2010). Some recent research were achieved as high as 94%, FAME
yield from the, composites of Al2O3 revealed the presence of metal
oxides like LiNO3/Al2O3, NaNO3/Al2O3, CrOx/Al2O3, MoOx/Al2O3,
WOx/Al2O3 and MoOx/P-Al2O3(Satyarthi, 2011)furthermore those
materials demands calcinations at <450 �C (Kumar et al., 2012).
Water component reacts with alkyl esters forming carboxylic acids
that react with alkaline metals, resulting in sodium or potassium
salts (soap formation) which in turn reduces alkyl ester yield and
makes recovery of glycerol complicated (Freedman et al., 1986).
In a study, Noiroj et al. (2009) used palm oil under transesterifica-
tion process by using 25 wt% of KOH loaded Al2O3 catalyst yields
91% conversion at 70 �C from methanol to oil molar ratio of 1:15.
Mixed catalyst of CaO and ZnO were studied with very large sur-
face area and small particle size to increase the FAME yield up to
94% from 10% wt of catalysts at 60 �C with an hour of incubation
(Ngamcharussrivichai et al., 2008). Zabeti et al. (2009) used
Al2O3-CaO composite catalyst in transesterification process in palm
Fig. 2. HR-SEM results of Al2
oil and showed significant positive effects on the presence of cal-
cium oxide. In another study, similarly synthesized CaO catalysts
were utilized for transesterification from Jatropha oil and yield
95% (Hawash and Diwani, 2011). CaO nanocatalysts consist of high
surface area associated with nanocrystalline nature, which
enhances the reaction kinetics (Banković-Ilić et al., 2017).

Mixed catalyst of CaO and ZnO were studied with small particle
size and higher surface area to increase the FAME yield up to 94%
from 10% wt of catalysts at 60 �C with an hour of incubation
(Ngamcharussrivichai et al., 2008).

The size and shape of metal oxide CaO4, Al2O3 and composite
Al2O3-CaO was determined. The particle size of the Al2O3-CaO
was 25–30 nm (99%), specific surface area (SSA) was 70–
82.74 m2/g and active site concentration was 190 mmol/g con-
ducted by TPD-CO2 test method.

In the optimization of transesterification reaction, methanol to
oil molar ratio leads a major role in FAME conversion. Transester-
ification requires 3 mol concentration of methanol to get yield the
same amount of fatty acids and one mol of glycerol in stoichiome-
try ratio (Baskar and Soumiya, 2016). Catalyst concentration
induces the reaction rate; oil molar ratio deals the impacts in reac-
tion reversible, reaction temperature control the evaporation of
methanol and nanocatalysts methyl ester conversion is directly
proportional to reaction time (Maceiras et al., 2011; Baskar et al.,
2017). Reaction was carried using various molar ratios (1:6, 1:8,
1:10, 1:12, 1:14 & 1:16) under the conditions of varying catalyst
concentration (5, 10, 15, 20, 25 & 30 wt%), incubation temperatures
(40 �C – 90 �C) and reaction time (2, 3, 4, 5, 6 & 7 h). The Optimiza-
tion of various parameters (Effect of conversion in oil molar ratio,
Catalysts wt %, Temperature �C, Time h) on FAME conversion from
P. murex lipid was mentioned in Table 1.

CaO has been used recognized as catalyst for transesterification
process (Banković-Ilić et al., 2017). Catalyst concentration
enhances the conversion yield in the transesterification process.
While increasing the wt % of catalysts results in a significantly
increased quantity of biodiesel yield. Highest biodiesel conversion
was recorded at 25 wt% of catalyst, a higher amount of catalyst
made a slurry-like substance that required increased stirring with
more power consumption (Ayetor et al., 2015). Moreover, the
reusability of catalysts was also checked for 25 wt% of catalysts
after transesterification and delivered good performance for fur-
ther two tests.

After completion of the reaction, supernatant (methyl esters)
was collected and a similar amount of ortho-phosphoric acid was
added and thereafter characterized by Gas chromatography. The
stability of the catalyst must be good in the reusability concept
(Baskar et al., 2017).
O3-CaO nanocomposite.
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Fig. 3. Gas chromatography analysis of fatty acid methyl ester.
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From the analyzed FAME by GC, (Fig. 3) it was determined that
saturated fatty acid content is higher whilst undesirable poly
unsaturated fatty acids are less.

Major components identified are Cis-10-Heptadecanoic acid
methyl ester (C17:1), Eicosadienoic acid methyl ester (C20:2)
8.43%, moreover apart from these major FAME components we
observed Butyric acid (C4:1) 5.53%, Caproic acid (C6:1) 11.53%,
Pentadecanoic acid (C15:1) 18.17% Palmitic acid (C16:0) 3.941%,
Octadecenoic (C18:1) 54.5831%, Hexadecenoic (C16:1) 6.941%,
Stearidonic acid (C18:4x3) 3.39%, Linoleic acid (C18:2) 4.45% and
the total Saturated fatty acid 65.8%, Polyunsaturated fatty acid
6.2%. The properties of biodiesel, such as Saponification value
150 ml of H3PO4/g, Iodine value 96, Acid value 10 ml of H3PO4/g,
water content 2.7%/ml, sulphated ash 0.009%/ml and density.
89%/ml was also determined through ASTM standards (Table 2).
In the conversion of FAME beyond the double bond was the impact
of c-alumina. A notable increment in the results observed behind
the double bond in the conversion of methyl soyate.

After lipid extraction, the obtained biomass was utilized to syn-
thesize AgNPs. The silver nitrate color was completely changed
from pale-yellow to brownish while adding the P. murex extract
at an incubation temperature of 80� C. The spectral data results
from existing characteristic SPR due to the reduction of silver ions.
UV–Visible spectrum analysis revealed a peak corresponding to
435 nm (Fig. 4). For the control with plain extract shows the peaks
at 280–300 nm. Results were reliable with high intensity peak
absorbance with small peak width at prominent temperatures.

The phytochemicals of P. murex effectively reduced silver
nitrate into AgNPs. X-Ray diffraction was performed for synthe-
sized AgNPs to confirm the crystalline nature. XRD pattern shows
the distinct peaks at 38.2�, 44.4�, 64.6�, 77.5� and 81.7 for the
AgNPs synthesized from P. murex extract after lipid extraction.
Table 2
Physical and chemical properties of produced biodiesel with ASTM standards.

Parameters Extracted plant oil Units

Average molecular weight 840 g/mol
Saponification value 150 ml of H3PO4/g
Iodine value 96 –
Acid value 10 ml of H3PO4/g
Water content 2.7 %/ml
Sulphated ash 0.009 %/ml
Density 0.89 %/ml



Fig. 4. UV–Vis spectra of silver nanoparticles synthesized from left over biomass of
P. murex.

Fig. 5. XRD Pattern of silver nanoparticles synthesized from left over biomass of P.
murex extract.

Fig. 6. HR-SEM images of silver nanoparticles syn

G. Sivaprakash et al. / Journal of King Saud University – Science 32 (2020) 1503–1509 1507
The observed lattice parameters were 111, 200, 220, 311, and 222
confirms the cubic silver (Fig. 5).

The calculated lattice constant was perfectly matched with
ICDD card number: 01-087-0718. It suggests the formation of
AgNPs from the P. murex extract and emphatically proved the crys-
talline phase presence in HR-SEM (Fig. 6). EDAX (energy dispersive
X-ray analysis) (Fig. 7) of the AgNPs sample showed the existence
of silver (Ag) element in the sample, moreover, other peaks shown
are from the substrate, because of the diffusion of high-energy
X-rays inside the sample.

From the results of Fourier Transform infrared spectroscopy, the
broad spectrum clearly shows the peak shift at 3428 cm�1 shows
O–H stretching frequency mainly due to free hydroxyl groups in
the sample. Also, a broad spectrum was observed at 1635 cm�1

due to carboxylic acid group. At 1049 cm�1, a band was observed
which confirmed the presence of alcohol groups and C–OH vibra-
tions (Fig. 8). AgNPs showed potent activity against K. pneumonia,
B. subtilis, E. coli and S. aureus (Fig. 9). The inhibitory effect of AgNPs
on Gram-positive and Gram-negative bacteria was described in
Table 3.
thesized from left over biomass of P. murex.

Fig. 7. EDAX results of synthesized silver nanoparticles.



Fig. 9. Antibacterial efficiency of synthesized silver nanoparticles.

Fig. 8. FT-IR results of AgNps synthesized from the leftover P. murex extract.
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Antibacterial activity was found to be high against Gram-
negative E. coli (11 mm); this maximum inhibition is due to the
penetration of NPs through cell membrane in Gram negative
Table 3
Antibacterial activities of AgNPs synthesized from leftover P. murex extract.

S.No Pathogens Zone of inhibition
(mm) of 5 mol
concentration of
synthesized AgNPs

Ag+ &
culture

Zone of inhibition of commerc

5 ml 10 ml 15 ml Positive
control

Tetracycline Ampicillin Cli

1. S. aureus 5 6 8 7 17 20 –
2. E. coli 9 10 11 9 – 15 –
3. B. subtilis 6 7 7 7 10 17 –
4. K.pneumoniae 5 6 7 6 15 10 –
bacterial cell walls and makes penetration much easier when
compared with gram positive bacteria (Shrivastava et al., 2010;
Al-Dhabi and Ghilan, 2019; Al-Dhabi et al., 2018) But the mecha-
nism of inhibition behind the antibacterial ability of AgNPs is not
yet fully elucidated (Shao et al., 2015; Rajkumari et al., 2019;
Arasu et al., 2019) AgNPs release Ag+ ions and these ions bind
enzymes and proteins of the cell surface of bacteria and suppress
cell division and replication cause bacterial cell death (Franchini
et al., 2014). AgNPs exhibits less impact on Gram-positive bacteria
than Gram-negative bacteria resulting in the destruction of E. coli
cell membrane or wall integrity (Tang et al., 2013).

4. Conclusions

Summary illustrates the environmental prosperity of biodiesel
production using lipid extracted from P. murex. The reaction was
performed by applying Al2O3-CaO nanocatalysts synthesized by
sol–gel method. It was obtained maximum lipid extraction of
21 mg/gfw from leaf, 32 mg/gfw from stem and 19 mg/gfw from
callus and was utilized for biodiesel production. We also found that
Al2O3-CaO nanocomposite is a promising candidate for highly effi-
cient catalytic activity rather than pure Al2O3, CaO4. A 60% conver-
sion was attained at 1:14 oil molar ratio with 25 wt% catalysts
loading at incubation of 80 �C and 6 h of reaction time. The remain-
ing biomass (after lipid extraction) was utilized for the synthesis of
cubic AgNPs as a potential biogenic antibacterial drug. The synthe-
sized AgNPs showed maximum zone of inhibition against E. coli.
Thus we conclude P. murex, a common medicinal plant in India,
has potential for large scale production of biodiesel in the presence
of Al2O3-CaO catalysts and the leftover biomass proved to be a suit-
able substrate for synthesis of AgNPs which acts as an efficient
antibacterial agent.
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