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In this paper the interaction of electromagnetic wave with electron is studied by Varia-
tional Iteration Method. This phenomenon is very important in physics and one of its application
is, generating the High-Order Harmonics from plasma surface. Obtained results are in excellent
agreement with experimental results and show the efficiency of applied technique.
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1. Introduction

One of the most important applications of differential equa-
tions is modeling the phenomena that happen in the nature.
But the non-linear part that exists in most of these equations
makes it difficult to obtain the exact solution and finding an
appropriate method that gives the best approximation is a very
big challenge. In recent decades, numerical calculation
methods are good means of analyzing these equations. But
in the numerical techniques, besides the volume of computa-
tional work, stability and convergence should be considered
in order to avoid divergent or inappropriate results. So, these
techniques cannot be used in a wide class of differential
equations and it seems using some analytical techniques such
as Homotopy Perturbation Method (HPM) (Rajeev and
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Kushwaha, 2013; Ebadian and Dastani, 2012; Sheikholeslami
et al., 2012a), Adomian Decomposition Method (ADM)
(Wazwaz et al., 2013; Gharsseldien and Hemida, 2009;
Sheikholeslami et al., 2012a,b, 2013) Variational Iteration
Method Using He’s Polynomials (VIMHP) (Matinfar and
Ghasemi, 2010, Matinfar and Ghasemi, 2013) can end the
problems that arise in solving procedures. One of the most
important phenomena in nonlinear optics is generating har-
monics of the highest possible order. As we know nonlinear
optical processes become more efficient at higher laser intensi-
ties, but in some cases the best quality of changes in the nature
of the nonlinearity of the laser—matter interaction can be seen
in certain characteristic intensity regimes (Voitiv and Ullrich,
2001; Voitiv et al., 2002).

Harmonic generation by an intense light wave incident on a
plasma-vacuum boundary involves a very complex and collec-
tive interaction of the electrons with the electromagnetic field
and can be investigated by oscillating mirror model. Oscillat-
ing mirror approximation (Voitiv et al., 2005; Dorner et al.,
2000; Ullrich et al., 2003; Moshammer et al., 1996) consists
of two distinct steps: in the first step the details of the electron
spatial distribution are ignored and the collective electronic
motion is represented by the motion of some characteristic
electronic boundary, e.g., the critical density surface. This sur-
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face represents the oscillating mirror from which the incident
light is reflected with the notification of having fixed ions. In
the second step, the emission from the moving boundary is cal-
culated, in particular the harmonic spectrum that is generated
upon reflection of the incident light.

As we know, the over dense plasma is highly reflective and
we have both electric and magnetic fields due to the incident
and reflected waves. Therefore, the electrons near the plasma
boundary should be driven from both fields. It is in the case
that inside the plasma, the electromagnetic fields decay expo-
nentially over a distance given by the skin depth. The motion
equation of an electron near the boundary is

R
m%:—efl—ef—eﬁx §:131,+ﬁ€,,,, (1)
where E, is the longitudinal electric field and resulted from the
electron-ion charge separation. The light with the electronic
and magnetic field strengths of E and B is acting on the electron
with force F,,. A qualitative picture of the motion can be
obtained by considering the orbit of a single free electron under
the action of the electromagnetic wave of frequency wy, and
neglecting restoring force F, (Corkum, 1993; Brabec, 2008).
This paper is advocated to investigate this phenomenon by
the Variational Iteration Method (VIM). The rest of this paper
is organized as follows: Section 2 describes the details of the
proposed method. Section 3 indicates sufficient conditions
for convergence of applied technique. Section 4 explains
related partial differential equations which interaction of elec-
tromagnetic wave with electron are obtained from and solving
procedure. Section 5 shows the simulation results. Finally,
conclusions are presented in Section 6.

2. Variational Iteration Method

The Variational Iteration Method, which provides an analytical
approximate solution, is applied to various nonlinear problems
(Biazar et al., 2010; Ganji et al., 2009; Gholami and Ghambari,
2011; Hassan and Alotaibi, 2010; Khader, 2013; Kafash et al.,
2013). In this section, we present a brief description of VIM.
This approach can be implemented, in a reliable and efficient
way, to handle the following nonlinear differential equation

Llu(r)] + Nlu(r)] = g(r), ~ r>0, 2

where L = d"%,m € N, is a linear operator, N is a nonlinear
operator and g(r) is the source inhomogeneous term, subject
to the initial conditions

W) =¢p, k=0,1,2,...,m—1. (3)

where ¢, is a real number. According to the He’s Variational
Iteration Method, we can construct a correction functional
for Eq. (2) as follows:

) =ulr) + [ AL+ Na(e) - gl i3 0,

where A(t) is a general Lagrangian multiplier and can be iden-
tified optimally via variational theory. As we can see, because
of the existence of nonlinear part in Eq. (2), it is not possible to
find the optimal value of Lagrange multiplier exactly. But we
can find an approximation of that by considering a restriction
on nonlinear part that causes this part to be ignored in proce-
dure for calculating A(t) and is denoted by #;. The restriction

that is mentioned is having restricted variation i.e. diu; = 0.
Making the above functional stationary with du; = 0,

Oui (r) = oui(r) + 5/0’- A(0){ Lu; () — g(1) }dr,

yields the following Lagrange multipliers,

m=1,

A=-1 for
T - )
A=1—r, for m=2,
and in general,
(_1)771 (m—1)
== 7 (71— > 1.
A = 1)!(1 r) , for m>=1

The successive approximations u;(r),i > 0 of the solution
u(r) will be readily obtained upon using the obtained Lagrange
multiplier and by using selective function u, which satisfies ini-
tial conditions. In our alternative approach we can select the
initial approximation u, as

m—

Ck x
OE”. (5)

Uy =

=
I

Consequently, the exact solution may be obtained as
follows

u(r)y = }erlcul(r)

3. Convergence analysis

In order to study the convergence of the Variational Iteration
Method, according to the approach of VIM presented in the
previous section, consider the following equation:

Llu(r)] + Nfu(r)] = g(r). (6)

Based on what illustrated above, the optimal value of
Lagrange multiplier in general case can be found as:

_] m
Z:(r(nf)])!(rfr)(m*l), for m > 1.
So, we have
_ , ' (_l)m (m—1)
wa) =)+ [ o=

X {L[u(7)] + Nu(7)] - g()}dr.

Now, define the operator A[u] as

b= [ e L)+ M) - g0, ()

(m
and components v,k =0,1,2,..., as
Vo = Uo,
v = A[vo],
V2 = A[v + v], (8)

Virr = Avo + v+ vy

we have:

u(r) = khjfolcuk(’) = i"k- 9)
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Therefore, using (7) and (8) the solution of Eq. (2) can be
obtained as follows

= ivk (I‘)
k=0

3.1. Convergence theorem

Theorem 3.1. Let A, defined in (7), be an operator from a
Hilbert space H to H. The series solution u = Zk Vi defined in
(9) converges if 3 0 <
some k € NU {0}

Theorem (3.1) is a special case of Banach’s fixed point
theorem. In what follows we briefly give the proof of
Theorem (3.1).

proof. Define the sequence {s,},% as,

So = Vo,
ST =V + Vi,

SQZV()-|—V1-|—V27
Sy =Vo+Vi+vat -+,

and we show that {s,}, is a Cauchy sequence in the Hilbert
space H. For this purpose consider

st = $all = [wnsr | < plvall < P2 vacall < -7 lvoll,
For every n,j € N,n = j, we have,
Hsn - S/'H = H(sn - Sn—l) + (Sn—l - Sn—Z) + -+ (S]'+| - S/)!’
1G5 = su-) L+ 1St = su-2)ll + -+ [[ (5701 = 5)|

<
<7 HVOIHV” Hvoll + -+ vl
1
ol
and since 0 < y < 1 we get,

s 5] <.

Therefore, { v,,}” » is a Cauchy sequence in the Hilbert space
H and it implies that the series solution u = 3" v, defined in
(9), converges. This completes the proof of Theorem (3.1). [

3.2. Uniqueness theorem

Theorem 3.2. If the series solution u = Z;ﬁf)vk, defined in (9)
converges, then it is an exact solution of the nonlinear problem

(2).

proof. Suppose the series solution (9)

o(r) = 325y, then we have

converges, say

limy; =0, (10)

J—=0o0

n
> [
=0

= V] = Va1 — w, (11)

and so,
Z[VH,] —v]= }imv, — Vg = —Vp. (12)
—0 J—7

Applying the operator L =
(12) then, from (5), we obtain

4% m € N to both sides of Eq.

00

D Ly —v] = —Lw] =0. (13)
=0
On the other hand, from definition (8), we have

Llvir — vl = —L[A[vo + v + -+ v]

= Ao+ v+ + ] (14)
when j > 1 and so, using definition (7) we get

M (71)," m—
o =] =2 [ o0 (B )
—Llvo+ -+ via] + N[vo + -+ )]
—Nvo+ -+ viiltdr, j=1 (15)

Now, the operator A[u] gives the mth-fold integral of
Lu(r) + Nu(r) — g(r). Since, the differential operator L =<
of order m is left inverse to mth-fold integral operator, the
Eq. (15) becomes as

Liviyr = vl = LIyl + N[vo +vi + -+ + ]
—N[V0+V1+"'+Vj_1], ]2 1. (]6)
Consequently, we have
> oLl = vl = L[] + N[vo] — g(1)
+ L[V]] + N[V() + Vl] - N[Vo]
+L[Vn]+N[VO+"'+Vn]_N[V0+"'+anl]- (]7)
Therefore,
ZL[VJH [Zv, +N Zv]:| - . (18)
=0

From (13) and (18), we can observe that ¢(r) = Z,’Oio"j is
the solution of Eq. (2) and this completes the proof of
Theorem 3.2. [

4. Calculation

To illustrate the proposed method for solving the equation
that is related to the generation of High Order Harmonics,
three cases are considered. Note that in interaction of ultra
intense radiation with plasma, F, can be ignored in Eq. (1),
Brabec, 2008). So, we have

2 —

md—;/:fe(E'Jr V x B). (19)
dr
Case I

In this case we study the interaction of electromagnetic
wave with single-color s-polarization. Therefore, we can
choose
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{E = E()COS(W[)f, (20)

B = ByCos(wi)k.

So, electromagnetic wave moves along x-axis. Substituting
Eq. (20) in Eq. (1) yields:

mx = —ev,ByCos(wi),
mj = —e(EyCos(wt) — v, ByCos(wt)), (21)
mz = 0.

Solving third equation in (21) results z = cte, then we do

not have any oscillation along z-axis. Using By = ? that is
obtained by the Maxwell equation gives:
=B Cos(wi
m c ( )y g ) (22)
j = — £ EyCos(wt) + £ = Cos(wt)x.
By substituting
x =2
E= e_€7
y="2, @)
t = wt,
we have following dimensionless equations:
x=—E)Cos(t)y,
{ ! oCos(t)y . (24)
y = —E;Cos(t) + EyCos(t)x.

To solve Eq. (24) by VIM, we should first construct the cor-
rection functional as follows

{x,Hl(t) =x,(t) + fo J1(t){x,.. + EoCos(t)y, }dr,
yn+l (t)

) + fo () {y,.. — E)Cos(1)x, + EyCos(t) }dx,
w~here fgn and j},, are considered as restricted variations, i.e.
ox, = oy, =0.
To find the optimal value of 4,(7) and 4,(t), we have
6xn+l(t) :éxn +6j;) {xnn +E0CO‘S( )in}dt?
6yn+l (t) = 5yn + 6f {yn,I EOCOS(T)}" + EOCOS(T)}dT7

or
{5x,,+1(t = 0x,(t) +f0
5yn+1(t - 5yVl t +j;)

which results

(r){dx,, }tdr,
(0){oy,, Ydr,

0x,11 (1) = 0x,(2) + A1 (1)0x,,

t
=@+ / (),
0
(25)

t

0Pt (1) = 09, (1) + 72(1)0p,, |, — X (T) 0w, |, + / 25 (1) 0y, dr.
0

(26)

Therefore, the stationary conditions are obtained in the
following forms

/11(‘[)|f:t =0,
1= 2(1)]., =0, (27)
Al =0,

and
/12(‘[)|r:t =0,
1= 2(1)]., =0, (28)

2 (D)= =0,

which results 4,(t) = L(t) =1—t.
Therefore, the variational iteration formula can be written
as follows

{ xn+l
yn+l

It is clear that one form of (24) solutions is (Sin) or (Cos) or
expansion of them. So, we can choose x; = —.07¢t and

= .01Cos(¢) as initial approximations, and other compo-
nents can be obtained as follows

_xn

)+ (e

)+ Jo(t =)y, —

— t){x,,. + EyCos(t)y, }dr,

ECos(t)x, + EyCos(t)}dr,

X (t):xo(t)—i-/r(r—t){xo” + EyCos(t)po tde
0
11

1 .
= —@t %Cos( )Sin(t),

x(t) =x(¢) + /Ot(‘z,' —t){x,,+ EyCos(t)y, }dt

1 107 .
= —EI—TOOCOS( )Sln(t),

x;3(t) = x(2) +/0 (t—1t){x2,, + EyCos(t)y, }dr

161 15401 1
=— t— Cos*(t) — Sin®(t
51200 (230400+92,160 05" (1)~ 260800 ( ))
x Sin(t)Cos(t),
(29)
And

70 =00+ [ (=), ~ ECos(o)in-+ EiCos(}

20107
=0 200 <
70 =50+ [ 605, ~ ECos(o)is + EiCosto)}dn
1880 /133849 1 ., 1
73600 (259200 ~ 12200 5" O+ 14450 € (t)> Cos(®),
»3(t) =y, (t / (t — t){y,, — EyCos(t)x; + EyCos(t)}dr,

3673 133849 91 ., 971
=— ( = Sin“(t) + == — 359200 Cos” (t)) Cos(t),

7200 \259200 51840
(30)
and the solution will be
x(1) = limx;(z),
{ym  timy, 1), e

Note that the solutions are obtained at E, = .5.
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Case II.

In this case the interaction of electromagnetic wave with
two-color, parallel polarization with the same amplitude is
investigated. Therefore,

E = Ey(Cos(w 1) + Cos(wa1))],

. R (32)
B = By(Cos(wit) + Cos(wat))k.

Substituting Eq. (32) in Eq. (1) yields:

mx = —ev,By(Cos(wit) + Cos(wyt)),

my = —e(Ey — v By)(Cos(wit) + Cos(wat)), (33)
mz = 0.

It is clear that solving third equation in (33) results z = cte,
then we do not have any oscillation along z-axis. As the same
as previous case we have following dimensionless equations:

X= —E0<Cos(t) + Cos(% t))y,

y= —E()(Cos(t) + Cos(% t)) + E()(Cos(t) + Cos(% t))x
(34)

To solve Eq. (34) by VIM, we should first construct the cor-
rection functional and determine the best value of Lagrange
multiplier. As stated and done in the previous case we have
M) =h(r)=1—1t

So, the variational iteration formula can be written as
follows

t )
X, (t)=x,(t) + / (t—t){x.. + Eo (Cos(r) + Cos (Z—'T))J"n}dr,
0 1

rea®) =20+ [ (=0, ~ 8 Cost) + cos (222 ),

+E, (cOs(z) + Cos (K—l‘c)) }dt, (35)

Using xo = —0.08¢ and y, = .01Cos(t) as initial approxima-
tions, the other components of solutions can be obtained as
follows:

x(t) =x0(t) + /Ot(r - t){x()" +E, (Cos(r) + Cos (Z—?r) )yo}dr

193 1 1 .
=~ 2400" " 3005™® ~ 100 5™ (20
1
3600Sm(3t)
t
xz(t):xl(t)—i-/ (r—t){xln—i-Eo (Cos(r)—i—Cos(::—zr))yl}dr
0 1
7 27
~T600" 400" ()_WS’"(ZI)
9 . 27
fmSth) 64OOSzn(4t)

(36)
And

(0 = e r—t>{

+E, (a,s + cm( ))}

(Cos 7) + Cos (Mﬁr>)xo
Wy

= ;(3)(3)+ Cos(t) + Cov(2t)
»(t) =i (t f—t){y (Cos 7) + Cm(:T ))xl

+E0(Cos )+ cos(22x) ) o

__TeeMTL 1, 1037
- 11520000 6400" 1920 %

Cos(3t) + Cos(4t) +

2591
19200

Cos(5t)

Cos(2t)

1
28800 30720 120000

(37)

and the solution will be
x(t) = limx;(1),

{ym ~ limy (1), ()

Note that approximate solutions are calculated at Ey = .5.

Case III:

In this case the interaction of electromagnetic wave with
two-color, orthogonal polarization and same amplitude is con-
sidered. Therefore,

{ % = EyCos(w l)jiJr EOCos(wzt)l%, (39)
B = ByCos(wt)k — ByCos(wat)j.

Substituting Eq. (39) in Eq. (1) yields:
mx = —e(v,ByCos(wit) + v.ByCos(wst)),
mj = —e(EyCos(wit) — vy ByCos(w1)), (40)
mz = —e(EyCos(wat) — vy ByCos(wyt)).

As the same as previous case and using

X=""
o
y==
__zwp
=0 (41)
__ _eE
T mewy ?
t=wit,

we have following dimensionless equations:

¥ = —E,Cos(t)j — E,Cos (— t)z
= —E(Cos(t) + E,Cos(t)x, (42)
— ~E)Cos(21) + EyCos(21) .

To solve Eq. (42) by VIM, as the same as previous cases we
have 4,(7) = A (1) = A3(7) =1 — ¢
So, the variational iteration formula are

t )
X1 (8) =x,(8) + / (t—t){xn, + EyCos(t)y, + E,Cos <:—2‘r> Zn Jdt,
0 1

ot
Y () =p,(0) + / (t=){ys.. — EsCos(t)x, + EoCos(t) }dr,
JO

t ) ).
Zus1 () = 2,(2) +/ (t— t){z,,” — EyCos (:—2r> x, +EyCos (:—Zr) }d‘r,
0 1 |

(43)
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Using xy = —.09¢,y, = .01Cos(t) and zo = .01Cos(1.5¢t) as
initial approximations, other components of solutions can be
obtained as follows

t )
xi(t) = xo(¢) + / (t— t){xon + EyCos(t)ypo + EOCos(::—yzr) 20}(11'
0

1

7 1 37
= 750" 160020 ~ 2550 Sin31) — 390 S ( ’)’
t )
x(t) = x(t) + / (r— t){xln + EyCos(t)y + E0C0s<w—21:) Z }dr
1
121 9
= 12400" ~ 320070 ~ 15500 S0,
(44)
And
t
21(6) = yo() + / (¢ — 1){po, — EyCos(t)k + EyCos(t)}de
107 109
=200 200 C*):
() =9, (0) + / (v — )y, — ExCos(2)it, + EoCos(t)}dr
0
2461571741 1
~ 260800 | 3200 €#W * 12,800 Cos(28) + 55500 C31)
1
+ 51200 Cos(4t),
(45)

Fig. 2

X(w)

t
z1(t) =2z0(t) +/ (t— t){zon —EyCos <w—2‘r) X0+ EyCos (W—21> }d‘c
o W wi
_ 209 109C <3 )

7500 " 450
(46)

" )
() =z() +/ (T—t){zln —E0C0s<::—21>i1 +E0Cos(:}—2r) }d‘f
0 1 1

23129 8 1 1741 3
= ——99225-&-%Cos (§t> +mCos<§t> (47)
1 7 1 9
39300 ( > 64300 Cos( )
(48)
And the solution will be
x(t) = limx(7),
y(t) = limy,(z), (49)

z(¢) = limg;(¢).

1—00

Note that calculations are at Ey, = .5 and :1—] =1.5.

(b)

100

(b)

D -
80 B

70F- =

0 L |
1 2 3 4 5
w

(a) Simulation of oscillation of electron along x-axis and y-axis. (b) Fourier transform of x(¢) for the second case.
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02 T T

(a)

Fig. 3

5. Results and discussions

Studying Fig. la and b shows that the electron moves back and
forth across the boundary twice during one cycle of the field, i.e.
we have a normal motion of the electron surface at 2w and gen-
erated harmonics oscillate with w, 3w, 5w, ... On the other hand,
odd harmonics will be generated and these results are in excel-
lent agreement with the experimental results (Brabec, 2008). In
case II the incident electromagnetic wave is radiated with
w; = wand w, = 2w. As Fig. 2a and b shows dominant frequen-
cies of electron along x-axis are w, 2w, and3w. Therefore, higher
harmonics of odd and even order will be generated. The fre-
quency of electrons ,w, along x-axis makes w,2w, 3w, ... and
2w, 3w, 4w, ... frequencies. And the frequency of electrons, 2w,
along x-axis makes w, 3w, Sw, ...and 2w, 4w, 6w, ... frequencies.
Also the frequency of electrons , 3w, along x-axis causes gener-
ated harmonics to have w,4w, 7w, ... and 2w, 5w, 8w, . ... fre-
quencies. It is clear that the gain of some frequencies such as
4w, Swand8w is increased. The obtained results by VIM for case
11, are the same as experimental results (Dohelstorm, 2007) and
also indicate a very important physical result that is related to
gain (Mirzanejad and Salehi, 2013). In the third case the incident
electromagnetic wave is radiated with w; = w and w, = 1.5w
and orthogonal polarization. By studying Fig. 3a and b it is
obvious that generated harmonics oscillate with w, 2w, 3w, ...
and higher harmonics of even and odd order will be generated.
In case 11, obtained results by VIM are the same as experimen-
tal results (Zengetal., 2007; Kim et al., 2005). Note that for solv-
ing mentioned equations by VIM there is no need to suppose any
restrictions and we can solve them generally.

6. Conclusion

In this paper, we solved the equations that model the genera-
tion of Harmonics of higher order, using He’s Variational Iter-
ation Method (VIM). Three cases were investigated and the
obtained results indicate that by using this method a rapid con-
vergent sequence is produced and this technique provides accu-
rate approximations to the solution of related equations that
are in excellent agreement with the experimental results. All
calculations were done generally and we did not suppose any
restriction that is necessary in experimental procedures and

80 T T T T

(b)

w

(a) Simulation of oscillation of electron along x-axis and y-axis. (b) Fourier transform of x(¢) for the third case.

this approves that the applied technique is reliable and efficient
to handle other equations and phenomena in physics. The
computations associated with the cases in this paper were per-
formed using Matlab.
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