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Abstract In this paper, a novel approach comprising the modified decomposition method with
Fourier transform has been implemented for the approximate solution of fractional sine-Gordon
equation u, — ®D%u+ sinu = 0 where D% is the Riesz space fractional derivative, 1 < « < 2. For
o = 2, it becomes classical sine-Gordon equation u,, — u,, + sin u = 0 and corresponding to
o =1, it becomes nonlocal sine-Gordon equation u, — Hu + sin u = 0 which arises in
Josephson junction theory, where H is the Hilbert transform. The fractional sine-Gordon equation
is considered as an interpolation between the classical sine-Gordon equation (corresponding to
o = 2) and nonlocal sine-Gordon equation (corresponding to « = 1). Here the analytic solution
of fractional sine-Gordon equation is derived by using the modified decomposition method with
Fourier transform. Then, we analyze the results by numerical simulations, which demonstrate the

simplicity and effectiveness of the present method.
© 2015 The Author. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The classical sine-Gordon equation (SGE) Wazwaz, 2009 is
one of the basic equations of modern nonlinear wave theory
and it arises in many different areas of physics, such as
Josephson junction theory, field theory, theory of lattices,
etc. (Dodd et al., 1982). In these applications the sine-
Gordon equation provides the simplest nonlinear description
of phenomena under consideration.
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The more adequate modelling can be prevailed correspond-
ing to generalization of classical sine-Gordon equation. In par-
ticular, taking into account nonlinear effects, such as long—
range interactions of particles, complex law of medium disper-
sion or curvilinear geometry of the initial boundary problem,
classical sine-Gordon equation results in nonlocal generaliza-
tion of SGE.

In this paper, we consider the nonlocal generalization of
sine-Gordon equation proposed in Alfimov et al. (2004) as
follows:

uy — RD*u+sinu =0 (1.1)

where the nonlocal operator ®D” is the Riesz space fractional
derivative, 1 < o < 2.

These similar types of evolution Eq. (1.2) arise in various
interesting problems of nonlocal Josephson electrodynamics.
These problems were introduced in Ivanchenko and
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Soboleva (1990), Gurevich (1992), Barone and Paterno (1982),
Aliev and Silin (1993), Aliev et al. (1995) and Alfimov and Silin
(1995), among these one of the basic model equations is

uy, — Hlu,] +sinu=0 (1.2)

where H is the Hilbert transform, given by

Ho] E%v.p./jQ go(fldé

and the integral is understood in the Cauchy principal value
sense. The evolution Eq. (1.2) was an object of study in a series
of papers (Ivanchenko and Soboleva, 1990; Gurevich, 1992;
Aliev et al., 1995; Alfimov and Popkov, 1995; Mintz and
Snapiro, 1994) available in open literature. Other nonlocal
sine-Gordon equations were considered in Cunha et al
(1996) and Vazquez et al. (1994).

In this paper, the derived analytical solutions are based on
the modified decomposition method with Fourier transform.
In this present paper, we employ a new technique such as
applying the Fourier transform followed by the decomposition
method. This new technique enables derivation of the analyti-
cal solutions for the nonlocal fractional sine-Gordon Eq. (1.1).

2. Mathematical preliminaries of fractional calculus

There exist numerous definitions of fractional integrals and
fractional derivatives. This paper deals with the Riesz frac-
tional derivative.

2.1. Definition: Riesz fractional operator

Definition 1. The Riesz fractional operator (Jiang et al., 2012;
Samko et al., 2002; Podlubny, 1999) forn—1<a<n,ne N
on the finite interval 0 < x < L is defined as

o

Wu(x7 1) = —cy (oD% + D )u(x, 1) (2.1.1)
1
where ¢, = TS(%“)’ oa#1
o _ 1 9" * U(é, [)dé
DD = TR 5 ), g
" _ (=D 9t u(E nde
Diu(x, 1) = T(n— ) ox" / -

Lemma 1. For a function u(x) defined on the infinite domain
[-00 < x < 0], the following equality holds
—(=A)u(x) = e, (D% + D ulx, 1)

aa(

:Wu(x) forn—1<a<n neN (212)

Proof. According to Samko et al. (2002), a fractional power of
the Laplace operator is defined as follows:

—(=A)ulx) = —F ' x"Fu(x)

where F and F~! denote the fourier transform and inverse
Fourier transform of u(x), respectively. Hence, we have

g 1 = ixE| z|% ~ ié v
(M) = 5 / e / ru()dnde

Supposing that u(x) vanishes at x = *oo, we perform
integration by parts,

Sl 1 [> .
[ emtman = [~ et
—00 € J

Thus, we obtain

~au() = = g [~ e L] ay

00

— ;[ ic(n—x) 1€
Let /=i [~ et - d¢, then

I:i{_/ eié(x—n)éz—ldé+/ eiﬁ(n—x)éu—ld€:|
0 0

for 0 < a < 1, we have

e T T

n—x " ix—nJ
~sign(x =) —a) 1, ool
- T =) {l + (=)
Using T()[(1 — ) = &~ and 7'+ (=i)*" = 2sin(%),
we obtain
sign(x —n)n

 cos (%) |x —n'T(1 — o)

Hence, for 0 < o < 1

L/”u, ) sign(x =)
o ) Y cos (Z)|x — n|'T(1 — o) 1

_ 1 ! t () ! > u'(n)
7_2008(%)[F(lffx)/ﬂo(x*ﬂ)adn_r(l*d)/x (’7*X)“dn}

Following (Samko et al., 2002; Podlubny, 1999), for
0 < o < 1, the Griinwald—Letnikov fractional derivative in
[a, x] is given by

(=Bl = -

u(@)(x —a)™" 1 tou(n)
S e el

Therefore, if u(x) tends to zero for a — —oo, then we have

L AU))
—sDlu(x) = - [M (x — n)“dn

Similarly, if u(x) tends to zero for b — + oo, then we have

—1 = (n)
I —a)l T

Hence, if u(x) is continuous and u (x) is integrable for x > a,
then for every a (0 < a < 1), the Riemann—Liouville deriva-
tive exists and coincides with the Griinwald—Letnikov deriva-
tive. Finally, for 0 < o < 1, we have

«Dlu(x) =

D% u(x) =
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2 1 ” ” 0" problem. To show the basic idea let us consider the following
—(— 2 = — = —
(=AY ul(x) 2 cos (& [ D) + Diu(v)] olx|* u(x) fractional SGE (1.1) in the operator form
2
where Lyu = "Diu+ N(u) =0 (3.1)
i 1 o [ u(n)dn where L, = (%7, symbolize the linear differential operators and
—soDiu(x) = 4”1 ) I [N (x—n) the notation N symbolize the nonlinear operator.
First we apply Fourier transform to both sides of Eq. (3.1)
-1 > ieldin
D) = o yeams
F(l—o)ox /. (n—x) Lyt + k"t + F(N(u)) = 0 (3.2)

Similarly for 1 < o < 2, we have

M) = = 3 D) + D] = e
where
s L@ u(n)dy
mbxuw)—m@/mm
L@ u(p)dy
xDmu(X)—male (r—x""

Finally, for n — 1 < a < n, we have

) = = g D) 4] = )
where
S R T
—ooDxu( )7 F(H*OC) Ix 10@ (X— é)\’l“’l*”
N o § N Y 7 (9 <
,\.Dxu(x)—max,,/ W

Remark. For a function u(x) defined on the finite interval
[0, L], the above equality holds by setting

L fulx) xe(0,L)
79=1{o x¢(0,1)

That is #"(x) = 0 on the boundary points and beyond the
boundary points.

Definition 2. The Riesz-Feller fractional derivative of order o,
0 < a <2, which is given as a pseudo-differential operator
with the Fourier symbol —|k|*, k € R is defined as in Samko
et al. (2002) and Podlubny (1999).

8“ —1 oA
WM(X) = F [k a(k)](x) (2.1.3)
where F(u(x)) = (k) = /%e'k“u(x)dx.

3. Analysis of the modified decomposition method with Fourier
transform (MDM-FT)

In this article, we apply the MDM (Wazwaz, 1999, 2001; Saha
Ray, 2006, 2008; Hazigah et al., 2011) to the discussed

where #(k, t) is the Fourier transform of u(x, r) and F denotes
the Fourier transform respectively.

Now, applying the twofold integration inverse operator
L,' = [y [i(e)dtdt to Eq. (3.2) and using the specified initial
conditions yields:

a(k, ) = ik, 0) + tia(k,0) — |k|*L,  a(k, )
— L, (F(Nw)) (3.3)

The Adomian decomposition method (Adomian, 1994)
assumes an infinite series solution for unknown function
i(k,t) given by
ik, 1) = i, (k, 1) (3.4)

n=0
and N(u) = >0 A, (up, uy, ..., u,), where A4, is the appropriate
Adomian’s polynomial which is generated according to algo-
rithm determined in Adomian (1994). In this specific nonlin-
earity, we use the general form of formula for 4, Adomian
polynomial as

1 d >~k
A,,(Ll(),u],...,un) :EW [N(Z)kuk>:|
L an =y

This formula is easy to set computer code to get as many
polynomials as we need in calculation of the numerical as well
as explicit solutions. For the sake of convenience of the read-
ers, we can give the first few Adomian polynomials for
N(u) = sin(u) of the nonlinearity as

A() = N(M()) = Sin(U())

,n>0 (3.5)

A=0

Al = Uj iNV(M()) =Uu COS(M())

8140

Ay, = iN( )+ “ a—zN( ) = up cos( )fuisin( )
2T 0, )T 2r ) gy ) T M2 SO Ty I

and so on, the rest of the polynomials can be constructed in a
similar manner.

Substituting the initial conditions into Eq. (3.3) and
identifying the zeroth components iy, we then obtain the sub-
sequent components by using the following recursive equations
of the standard ADM.

i1 (k, 1) = — k"L, 4, (k, ) — L, (F(4,)), n>0 (3.6)

Wazwaz (1999) proposed that the construction of the zer-
oth component of the decomposition series can be defined in
a slightly different way. In Wazwaz (1999), he assumed that
if the zeroth component iy = g and the function g is possible
to divide into two parts such as g; and g», the one can formu-
late the recursive algorithm for u, and general term i, in a
form of the modified recursive scheme as follows:
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=&
i =gy — kI"L, o (k1) — L, (F(4o)) 3.7)
fpyy = _‘k‘ th (K, 1) — L;l(f(A”))7 n>1

This type of modification is giving more flexibility in order
to solve complicate nonlinear differential equations. In many
cases the modified decomposition scheme avoids the unneces-
sary computation especially in calculation of the Adomian
polynomials. The computation of these polynomials will be
reduced very considerably by using the MDM.

It is worth noting that once the zeroth components i, is
defined then the remaining components i,, # > 1 can be com-
pletely determined. As a result, the components iy, iy, ..., are
identified and the series solutions thus entirely determined.
However, in many cases the exact solution in a closed form
may be obtained.

The practical solution will be the n-term approximations ¢,

n—1

Py = Zﬁ,(l{, [)
i=0

with

n>1 (3.8)

lim g, = a(k, 1)

Then by applying inverse Fourier transformation we can
get the solution for u(x, 7).

In the present analysis, for reducing Riesz space fractional
differential equation to ordinary differential equation, we
applied here Fourier transform. In this modified decom-
position method with Fourier transform (MDM-FT), we
finally applied inverse Fourier transform for getting the solu-
tion of Riesz space fractional differential equation.

4. Implementation of the MDM-FT method for approximate
solution of nonlocal fractional sine-Gordon equation (SGE)

In this section, we first consider two examples for the applica-
tion of MDM-FT for the solution of nonlocal fractional SGE
Eq. (1.1).

4.1. Example 1

In this example, we shall find analytical approximate solution
of the nonlocal fractional SGE Eq. (1.1) with given initial con-

ditions (Wei, 2000; Kaya, 2003; Batiha et al., 2007)
u(x,0) =0, u/(x,0)=4sech(x) (4.1.1)

Then by applying Fourier transform and using Eq. (2.1.3)

on Eq. (1.1) and Eq. (4.1.1), we get
diy (k, 1) + |k|"0(k, 1) + F(sinu) = 0 (4.1.2)
with initial conditions
k
i(k,0) =0, i (k,0) = 2\/Zsech(7n) (4.1.3)

where F denotes the Fourier transform and k is called the
transform parameter for Fourier transform.

Now we apply the modified decomposition method for
solving Eq. (4.1.2). Using the scheme of this method given in
Eq. (3.7), we can write

iio(k, 1) =0 (4.1.4)

]21 (k, [) = Zml sech (k7;> — |k|“L:l]1:lo(k7 [)
- L, (F(40))

= 2\2nt sec h(]%) (4.1.5)

thy (K, 1) = —Ikl Lyt (k1) = Ly (F (A1)
- \/ﬂt sech( )ffx/ﬂt |k|” sech( > (4.1.6)

and so on.
Then by applying inverse Fourier transform of above from
Eq. (4.1.4) to Eq. (4.1.6), we have

upy(x,1) =0

uy (x, 1) = 4t sec h(x)

uy(x, 1) = %13(—2SCC/1(X) +27 7 T (1 4 )
y (*C(l +a7n;n2ix) 7§(1 +oc,n:r[2ix)
i) i)

where {(s, a)

:Z}iom is called Hurwitz zeta function

which is a generalization of the Riemann zeta function {(s)
and also known as the generalized zeta function and so on.

In this manner the other components of the decomposition
series can be easily obtained by which u(x, ) can be evaluated
in a series form as

u(x,t) =up(x,0) +uy (x,8) + ur(x,1) + -+ =4tsech(x)

=1 (=2sech(x)+27"n " *T(1 +a)

*3
T —2ix T+ 2ix
" (‘C (1ot r) -e(14a)
Pras Y (a4 2)) ) 4+
“3 2 %3 2

4.1.1. Numerical construction of Breather solution

(4.1.7)

In this present numerical experiment, Eq. (4.1.7) obtained by
MDM-FT has been used to draw the graphs as shown in
Fig. 1 for « = 1.75. The numerical solutions of Riesz fractional
SGE in Eq. (1.1) have been shown in Fig. | with the help of 3rd
order approximation for decomposition solution of u(x, ).
This represents breather-kink and anti-kink transition asso-
ciated with fractional order SGE Eq. (1.1).

4.2. Example 2

In this case, we shall find analytical approximate solution of
the nonlocal fractional SGE Eq. (1.1) with given initial condi-
tions (Wei, 2000; Kaya, 2003; Batiha et al., 2007)

u(x,0) = m+ ecos(ux), u,(x,0)=0 (4.2.1)
Then by applying Fourier transform and using Eq. (2.1.3)
on Eq. (1.1) and Eq. (4.2.1), we get

i (k, 1) + |k|"a(k, 1) + F(sinu) = 0 (4.2.2)



52 S. Saha Ray

L L L Loy
-40 -20 20 40

(@) (b)

Figure 1 (a) The MDM-FT method solution for u(x, f), (b) corresponding solution for u(x, ) when ¢ = 0.4.

© (d)

Figure 2 (a) The numerical results for u(x, f) obtained by MDM-FT for (a) ¢ = 0.001, (b) ¢ = 0.05, (c) ¢ = 0.1 and (d) ¢ = 1.0.
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with initial conditions

i(k,0) =215 (k) + \/gaé(kf )+ \/gsa(kw), i1,(k,0)=0
(4.2.3)

where F denotes the Fourier transform, & is called the trans-
form parameter for Fourier transform and J(.) denotes the
Dirac delta function.

Analogous to arguments as discussed in previous
Section 4.1. We may obtain the following equations

iig(k, 1) = V2125(k) (4.2.4)
iy (k, 1) = \/gaé(k — )+ \/gaé(k + )
+ LN (— ki (k, 1) — F(Ao))

= \/ggé(k -+ \/gsé(k + ) (4.2.5)

(k1) = L™ (= |k["in (k, 1) — F (A1)

= (L s —w =L Fearpoi -
7(2\/;1‘85(]{ ) 2\/;za|k| o(k — )

1 [n, I [m,
+2\/;t ed(k + p) 2\/; e|k| 5(k+/l)) (4.2.6)

and so on.
Then by applying inverse Fourier transform of above from
Eq. (4.2.4) to Eq. (4.2.6), we have

uy(x, 1) =mn

uy(x, 1) = ecos(ux)

(. 1) = — 3 Pecos(ux) (~1 + (—) Ul—4) + £ U(w)

where U(.) denotes the Unit Step function and so on.

In this manner the other components of the decomposition
series can be easily obtained by which u(x, ¢) can be evaluated
in a series form as

u(x,t) = up(x, 1) +uy (x,1) + up(x,6) + - - -

24
X (124 2(=2+ (—-)")) ()" U(—p)
(=124 22+ @) UW) + -

1 1
=1+ (24 + 12 + t*)ecos(ux) + ﬁzza cos(px)
(
4.2.7)

4.2.1. Traveling wave solutions and numerical discussions

In this present numerical experiment, Eq. (4.2.7) obtained by
MDM-FT has been used to draw the graphs as shown in
Fig. 2 for fractional order value o = 1.75. The numerical solu-
tions of fractional SGE Eq. (1.1) have been shown in Fig. 2
with the help of 4th order approximation for the decom-
position series solution of u(x, 7).

5. Conclusion

In this paper, a new analytical technique MDM-FT method
has been proposed to obtain the approximate solution of non-
local fractional SGE. The fractional SGE with nonlocal Riesz

derivative operator has been first time solved by the MDM-FT
method in order to justify applicability of the above method.
The approximate solution to fractional SGE has been calcu-
lated by using the MDM without any need for transformation
techniques and linearization of the equation. Additionally, it
does not need any discretization method to get numerical solu-
tion. This method thus eliminates the difficulties and massive
computation work. The decomposition method is straightfor-
ward, without restrictive assumptions and the components of
the series solution can be easily computed using any mathe-
matical symbolic package. Moreover, this method does not
change the problem into a convenient one for the use of linear
theory.

The proposed MHAM-FT method is very simple and effi-
cient for solving nonlinear fractional sine-Gordon equation
with nonlocal Riesz derivative operator.
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