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Insilico modelling studies was executed on twenty-four (24) novel C14-urea-tetrandrine compounds as
inhibitors of prostate cancer (PC3) cell line. The molecular structure of each compound was correctly
drawn using ChemDraw software, then optimized using Density Functional Theory (DFT/B3LYP/6-
31G*) at ground state with Spartan 14 V1.1.4 software. Accordingly, the optimized structures were
numerically represented by computing diverse molecular descriptors using PaDEL calculator. The entire
data set results were divided into training and test set. A multi-linear regression model based on genetic
function approximation in selecting statistically significant descriptors was built from the training set.
The resultant QSAR model (R2

train = 0.8075, Q2
LOO = 0.6866, R2

test = 0.6147, cRp2 = 0.7397) was adequately val-
idated using the leave-one-out (LOO) cross-validation method, MLR Y-randomization test, bias-variance
estimation (bootstrapping), and it was accepted due to its statistical significance based on threshold values
of accepting QSAR model globally. Compound 1 and 11 as the best inhibitors were docked with B-cell lym-
phoma 2 (Bcl-2) crystal structure so as to explore the kind of interactions in each stable complex formed.
The results revealed binding scores of �8.7 kcal/mol for the ligand (compound 1) and �9.3 kcal/mol for
the ligand (compound 11) which is the highest. It was observed also that both inhibitors made hydrophobic
and hydrogen bond interaction with the amino acid residue of B-cell lymphoma 2 (Bcl-2) protein which
control cell death in prostate cancer. The present findings could be useful in designing and synthesizing
new C14-urea-tetrandrine with better inhibitory potentials against prostate (PC3) cell line.
� 2019 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In recent times, prostate cancer is one of the most malicious
syndromes in male worldwide (Gleave et al., 1999). It grows slowly
after some cells in the prostate gland transformed and become
abnormal. These mutations in the DNA of abnormal cells cause
them to divide and grow faster than normal cells. The abnormal
cells remain alive, while other cells perish which leads to the cre-
ation of a tumor that can develop and conquer neighboring tissues
(Tso et al., 2000). It is being treated for adult men between the age
of 30 s to 40 s, but more often for 65 years and above. However,
black men were reported to have a greater risk than other races
and the reason is not clearly understood (Tso et al., 2000). Though
at an early stage of cancer, it can be well-managed by radiotherapy
or medical surgery, while patients with chronic prostate cancer are
treated with hormone therapy (Gleave et al., 1999). The B-cell lym-
phoma 2 (Bcl-2) is the first family member of the Bcl-2 protein
type, which are regulatory proteins that control cell death in
prostate cancer. These include BCL-2, BCL-xL BCL-w, and MCL-1
as anti-apoptotic proteins that inhibit apoptosis by confiscating
the pro-apoptotic proteins (Bax & Bak) and by inhibiting their
oligomerization (Chittenden et al., 1995; Diaz et al., 1997).
Nonetheless, apoptosis induces cancer cells through extrinsic and
intrinsic pathways. Cytotoxic drugs at high-dose radiation damage
the DNA and mitochondria, causing inactivation of the ‘intrinsic’
caspase-9-mediated apoptotic pathway. Yet, numerous molecules
participate in mitochondria-mediated apoptosis (Blagosklonny
et al., 1997, 1996). Tetrandrines are compounds of
dibenzyltetrahydroisoquinoline, derived from Chinese medicinal
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plant called Stephania tetrandra and it is reported to have anti-
tumor activities, proliferation chemotherapeutic drugs and con-
verses multidrug resistance (MDR) of tumor cell. New drugs with
novel properties are synthesized via several trials, which is costly
and exhausts time. The advent of insilico modeling techniques like
Quantitative Structure-Activity Relationship (QSAR) and molecular
or protein docking reduces these limitations and even helps in
designing better drugs. The QSAR technique arrives at a mathemat-
ical model that correlates the chemical, physical, biological activi-
ties, or pharmaceutical effect with some numerical information
(descriptors) from the chemical structure of molecule while molec-
ular docking predicts the possible orientation of the stable complex
formed, when ligand interacts with an enzyme or protein as a
receptor (Ibrahim et al., 2020). The main aim of this research was
to generate a new QSAR model for predicting inhibitory concentra-
tions of some C14-urea tetrandrine compounds against prostate
(PC3) cell line by a genetic function approximation-multi linear
regression (GFA-MLR) technique, then dock the best inhibitors
with B-cell lymphoma 2 (Bcl-2) protein crystal structure to study
their molecular interaction. Furthermore, the QSAR model valida-
tion methods in this study include; leave-one-out (LOO) cross-
validation, external test set, Y-randomization test, and the bias-
variance estimation using bootstrapping re-sampling technique.
2. Methodology

2.1. QSAR Studies

2.1.1. Dataset
The twenty-four (24) synthesized C14-urea-tetrandrine analogs

with their inhibitory concentrations (IC50) against prostate cancer
(PC3) were gotten from the literature (Lan et al., 2017). The molec-
ular structures of the inhibitors were aligned with their respective
inhibitory concentrations (IC50) measured in micromolar (lMÞ of
concentration as shown in Fig. 1 and Table 1 respectively. An IC50

value of a compound is defined as the required concentration to
decrease 50% of the prostrate (PC3) cell line viability. The concen-
tration was further normalized so as to reduce skewness in the
activity values using logarithmic scale formula below.

pIC50 ¼ �log10ðIC50 � 10�6Þ ð1Þ
2.1.2. Equilibrium geometry
The compounds displayed above were correctly drawn by

employing ChemDraw software V12.0.2, and their equilibrium
geometries were acquired via optimization with Density Func-
tional theory (DFT/B3LYP/6-31G*) at ground state using Spartan
Fig. 1. C14-urea tetrandrine structure.
V.1.1.4 2014 version (Abdulfatai et al., 2017, 2018; Arthur et al.,
2018; Becke, 1993; Ibrahim et al., 2020).

2.1.3. PaDEL descriptors calculation
Pharmaceutical Data Exploration Laboratory (PADEL) descrip-

tors calculator enable us to calculate 1875 molecular descriptors
from a compound. These descriptors include spatial, topological,
electrostatic, constitutional, geometrical, physiochemical, autocor-
relation, structural, and thermodynamic descriptors (Alisi et al.,
2018). The twenty-four (24) optimized compounds were appropri-
ately saved as SD file before engaging PaDEL software (Yap, 2011).

2.1.4. Data pretreatment and division
The results from the PADEL- software which is in Microsoft

Excel sheet format were pretreated by removing constant values,
non-informative, redundant and highly correlated descriptors
using a software called Data Pre-treatment GUI 1.2, downloaded
from Drug Theoretical and Cheminformatics Laboratory (DTC
Lab) (Ambure et al., 2015). Consequently, the data were further
divided into two distinct sets (training and test set) via a data divi-
sion software by applying Euclidean-based Kennard-Stone’s algo-
rithm method as one of the best division technique reported in
many QSAR studies.

2.1.5. Model building and validation
The training set compounds were exported to the Material stu-

dio (V8) software for model building by using genetic function
approximation- multilinear regression (GA-MLR) technique, where
dependent variables correspond to the inhibitory concentration
(IC50) and the quantum molecular descriptors are considered as
independent variables. In materials studio, LOF expression
(Eq. (2)) is slightly different from the original Friedman
expression (1991).

LOF ¼ SSE

M 1� b cþd�p
M

� �h i2 ð2Þ

where c represents the number of the terms in the model, d repre-
sents a scaled smoothing factor, p corresponds to the entire number
of descriptors in the model, M represents the number of inhibitors
or compounds that made up training set and b is a safety factor with
a value of 0.99 which guarantee that the denominator of the equa-
tion can never be equal to zero (Khaled and Abdel-shafi, 2011).

SEE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Yexp � Ypred

� �2
N � P � 1

s
ð3Þ

where SEE means Standard Error of Estimation, low SEE value
implies better model and vice versa.

The QSAR validation technique tends to estimate the accuracy
of mathematical models. There are numerous methods normally
employed to validate the predictive capability of a model. How-
ever, the simplest method of validation is to divide the experimen-
tal data into two different sets: the training set (internal validation
set) and the validation set (external test set). The model internal
validation was examined using Leave-one-out (LOO) cross-
validation method R2 (Q2

cv), defined as shown in Eq. (4).

¼ 1�
P

yexp�ypred

� �2

P
yexp�y

�
training

� �2

2
64

3
75 ð4Þ

where y
�
training is the mean experimental activities, yexp is the exper-

imental activities, and ypred corresponds to the predicted inhibitory
concentration of compounds in the training set respectively
(Brandon and Orr, 2015).



Table 1
Substitution arrangement of C14-urea tetrandrine derivatives and their inhibitory concentrations (IC50).

S/N o. R1 R2 IC50 ðlMÞ pIC50

1 H 0.73 6.1366

2 H 0.88 5.3306

3 H 2.97 6.1307

4 Methyl Methyl 1.71 5.6840
5 Methyl 0.98 5.2839

6 H 4.91 5.3429

7 H 7.82 5.1636

8 H 3.85 5.3279

9 H 3.15 5.2418

10 H 4.67 5.2291

11 H 0.74 5.8794

12 H 2.07 6.0555

13 H 5.2 5.5301

14 H 4.54 5.4220

15 H 6.86 5.7544

16 H 4.70 5.6635

17 H 5.73 5.4225

18 H 5.9 5.5272
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Table 1 (continued)

S/N o. R1 R2 IC50 ðlMÞ pIC50

19 H 1.32 5.7670

20 – 2.95 6.0087

21 H 3.78 5.3089

22 H 1.76 5.1067

23 – 2.17 5.4147

24 – 3.78 5.5016
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where p is the number of descriptors, n is the number of com-
pounds as the training set.

The external test set is the optimal choice for checking the per-
formance of a model with compounds that are not used in building
the model (training set compounds). This measures model’s pre-
diction competency and coefficient of determination ðR2

test) defined
as Eq. (5);

R2
test ¼ 1�

P
Ypredtest � Yexptest

� �2
P

Ypredtest � Y
�
training

� �2 ð5Þ

where Yexptestand Ypredtest are the experimental and predicted activ-

ity of the test set compounds respectively. Y
�
training is the mean value

of experimental activities of the training set (Brandon and Orr,
2015; Tropsha et al., 2003a,b)

2.1.6. Prediction error analysis
The developed model was subjected to prediction error analysis

based on bias-variance estimation. This technique allows QSAR
users to understand the contribution of the two component of
the prediction errors, specifically systematic (bias) error and ran-
dom (variance) error in the model generated (Roy et al., 2017).
The analysis was executed using a software tool called Bias-
Variance Estimator downloaded from DTC lab website and it uses
bootstrapping as a resampling technique. The parameters bias2,
variance and mean square error (MSE) are evaluated using the
equations below;

Bias2 ¼ 1
nc

Xnc
i¼1

y
�
predðiÞ � yexpðiÞ

� �2
ð6Þ
�YB
predðiÞ ¼

PnB
j¼1y

BðjÞ
predðiÞ

nB
ð7Þ

Variance ¼ 1
nc

Xnc
i¼1

1
nB

XnB
j¼1

yBðjÞpredðiÞ � y
�B

predðiÞ
� �2

ð8Þ

MSE ¼
Xnc
i¼1

yexpðiÞ � ypredðiÞ
� �2

nc
ð9Þ

where nc represents the number of compounds in the test set, yexpðiÞ

is the experimental response value of the compound ‘i’, y
�B

predðiÞ is the
mean predicted response value of compound ‘i’ from ‘nB’ bootstrap

models, yBðjÞpredðiÞ is the predicted response value of compound i from

the bootstrap model ‘j’, nB is the number of bootstrapping models
generated, ypredðiÞ is the predicted response of compound i from
the model.

2.1.7. MLR Y-Randomization
The multi-linear regression analysis termed as Y-randomization

was executed on the training set data by permuting the activity
values with respect to the selected descriptors matrix (Minovski
et al., 2013). It is expected to have models with low R2 and Q2 val-
ues for several trials (Roy, 2013). However, the Coefficient of deter-
mination (cR2

p) is an alternate parameter evaluated that should be
above 0.5 and it is defined as in Eq. (10)

R2
p ¼ R� R2 � Average Rrð Þ2

h i0:5
ð10Þ
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where cR2
p is Coefficient of determination, Rr is average ‘R’ of ran-

dom models. The Y-randomization were carried out using the
‘‘MLR Y-Randomization Test 1.2” software downloaded from DTC
Lab software (Myers, 1990).

2.1.8. Mean effect
The mean effect measures molecular descriptors influence on

the activity of a compound in the model. However, the signs cou-
pled with the magnitude of these descriptors depicts the individual
strength and direction in influencing the activity of a compound. It
is defined as;

Mean Effect ¼ bj

Pn
i DjPm

j bj

Pn
i Dj

� � ð11Þ

where bj correspond to the coefficient of the descriptor j, Dj corre-
spond to the value of each descriptor matrix in the training set
and m is the number of descriptors that appear in the model and
n is the number of molecules in the training set (Minovski et al.,
2013). Note that its sign shows the variant direction in the activities
resulting from decrease (or an increment) of descriptor value.

2.1.9. Varian inflation factor (VIF)
The variance Inflation Factor is a measure of identifying the

multicollinearity among the descriptors, usually expressed as:

VIF ¼ 1
ð1� R2Þ ð12Þ

where R2 is the correlation coefficient. The VIF values ranging from
1 to 5 depicts that the model is stable and acceptable. Hence, VIF
value corresponding to unity means that there is no inter-
correlation between the variables. But, VIF value greater than 10
suggests that the model is unstable and unacceptable (Myers,
1990).

2.1.10. Applicability domain
According to Netzeva and his coworkers, the applicability

domain of a model is the response and compound structure space
in which the model makes consistent predictions (Netzeva et al.,
2005). In other words, it helps in detecting areas where the com-
pound predictions can be reliably useful. Therefore, chemical com-
pounds that drop outside the applicability domain cannot make a
very good prediction. Consequently, the prediction that is interpo-
lated in the chemical space is acceptable while extrapolated pre-
dictions in the chemical space are rejected as well. The leverage
method is one of the simplest distance to the model technique
used in evaluating the significant area of the QSAR model. Leverage
for a compound (J) is calculated as in Eq. (13).

Leverage Jð Þ ¼ x Jð Þ � XT � X
� ��1

� x Jð Þ ð13Þ

where x Jð Þ is a vector of molecular descriptors of compound J, X is a
matrix of descriptors for compounds from the training set, and XT is
the transpose matrix of X used in developing the model. The warn-
ing leverage (h*) is the borderline of normal values for X outliers
defined as:

H� ¼ 3 � K þ 1ð Þ
n

ð14Þ

where n is the number of training compounds and k is the number
of descriptors in the model. By implication, high leverage greater
than warning or threshold leverage value (J > H*) depicts unreliable
prediction and such compound tend to seriously effects the regres-
sion performance (Tropsha et al., 2003a,b). The area of unfailing
predictions is defined as compounds whose leverage values are
within the threshold (J < H*) and the standardized residuals is not
greater than 2a (2 standard deviation units). Standardized residuals
and leverage values plot also termed as Williams plot, interprets the
significant area of the model in chemical space.

2.2. Computational docking studies

The molecular interactions study were carried out between best
ligands (compound 1 and 11) with higher IC50 values and the Bcl-2
protein crystal structure (target) on Dell computer system, with

processor properties of Intel � Core i3-6100U CPU Dual@2.30 GHz,
12 GB (RAM)

2.2.1. Making of ligand and target
The two optimized compounds from Spartan software were

appropriately saved as Protein Data Bank (PDB) file, then visualized
using Discovery studio (Abdulfatai et al., 2017). Subsequently, the
crystal structure of the Bcl-2 protein (target) was downloaded from
Protein Data Bank website with PDB code 2XA0. Fig. 2 displays the
structures of the prepared ligand and protein in 3D.

2.2.2. Docking process
The docking of the prepared ligands (compound 1 and 11) with

Bcl-2 was conducted using the Auto vina version 4.0 of pyrex soft-
ware. Hence, discovery studio software was used in visualizing the
molecular interactions of the stable complex.

3. Results and discussion

3.1. QSAR studies

Firstly, the 32 quantum chemical descriptors for all the drawn
compounds were obtained from Spartan 14 software via the opti-
mization process. These were pooled with the 1875 molecular
descriptors computed by PaDEL software to give a total of 1907.
The results in MS excel (.csv) were subjected to data pretreatment
which removed non-informative constant data and pair of vari-
ables with a correlation coefficient greater than 0.7 using the Data
pretreatment software. The dataset results from the pretreatment
process were partitioned using Kennard-Stone algorithm method,
where 16 compounds are considered as training set and 8 com-
pounds are the test set. The division was successfully done using
the ‘‘Dataset Division GUI 1.2” software (Arthur et al., 2016 a,b).
The training set was used in building a QSAR model by employing
genetic function approximation-multilinear regression of material
studio (Eq. (15)), which uses genetic algorithms technique for the
selection of three (3) optimum descriptors as independent vari-
ables in the model. In order to assess the level of prediction errors
(residuals), bootstrapping resampling procedure was applied by
developing 10,000 bootstrap samples of the same size starting
from the training set (Roy et al., 2017). The bias, variance and mean
square errors were very low, which means that the model predic-
tions are good. The validation parameters which expressed the
steadiness, robustness and extrapolative capabilities of the model
was presented in Table 2.

pIC50 ¼ 0:000729372 � ATSC3m� 1:804691367 � VE1DzZ

þ 0:340795837 � nsFþ 6:481075505 ð15Þ
Inhibitory concentration (pIC50) from the experiment together

with the predicted concentration (pIC50) from the model generated
and their residual values were reported in Table 3. The Residual
value is defined as the differences between experimental and pre-
dicted concentrations, and lower residual values signify that the
model has a high predictive ability.

The three (3) descriptors values were extracted from the train-
ing set, then subjected to Pearson’s correlation matrix, mean effect



Fig. 2. 3D structures of the prepared ligand and target.

Table 2
Validation parameters of the model.

Validation Parameters Model Threshold Reference

Friedman LOF 0.1195 –
R-squared (Training set) 0.8075 �0.6 Tropsha

(2010)
R-squared (Adjusted) 0.7593 >0.6 Tropsha

(2010)
Cross validated (R-squared) 0.6866 �0.6 Tropsha

(2010)
Significant Regression Yes –
Significance-of-regression F-value 16.7796 –
Critical SOR F-value (95%) 3.6506 –
Replicate points 0 –
Computed experimental error 0 –
Lack-of-fit points 12 –
Min expt. error for non-significant LOF

(95%)
0.1241 –

No. of Bootstrap Models 10,000 –
Variance 0.01124 –
Bias^2 0.0776 –
Mean Square Error 0.08425 –
R-square (test set) 0.6149 �0.6 Tropsha

(2010)

Table 3
Inhibitory concentrations (pIC50) of the C14-urea tetrandrine compounds.

Name Inhibitory concentrations (pIC50) Predicted Residuals

1* 6.1366 6.0819 0.0546
2* 6.0555 5.9704 0.0850
3* 5.5272 5.3361 0.1910
4 5.7670 5.9830 �0.2160
5 6.0087 6.0980 �0.0892
6* 5.3089 5.6969 �0.3880
7* 5.1067 5.1576 �0.0509
8* 5.4145 5.4088 0.0057
9 5.5016 5.4258 0.0758
10* 5.3306 5.3733 �0.0426
11* 6.1307 6.1137 0.0169
12* 5.6845 5.7349 �0.0506
13* 5.2839 5.2359 0.0480
14* 5.3429 5.3013 0.0416
15 5.1636 5.3186 �0.1549
16* 5.3279 5.3617 �0.0338
17* 5.2418 5.3935 �0.1517
18 5.2291 5.2086 0.0204
19* 5.8794 5.5773 0.3020
20 5.5301 6.1269 �0.5968
21 5.4225 5.7741 �0.3516
22* 5.7544 5.7846 �0.0301
23* 5.6635 5.6605 0.0029
24 5.4225 5.7806 �0.3581

*Superscript represent training set.
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and variance inflation factor analysis as presented in Table 4. The
Pearson correlation coefficients for each pair of descriptors was
less than 0.5, which inferred an insignificant inter-correlation
among the descriptors. The variance inflation factor (VIF) for all
the three (3) descriptors are not greater than 1.5, this signifies that
the descriptors were orthogonal and the model has clear statistical
significance. Furthermore, the mean effect explained the relative
significance and their direction of contribution in the model.
ATSC3m is a 2D Centered Broto-Moreau autocorrelation - lag 3 /
weighted by mass descriptor with positive mean effect, this indi-
cates the positive contribution of the descriptor when increased.
VE1_DzZ is the coefficient sum of the last eigenvector from Barysz
matrix / weighted by an atomic number with the highest contribu-
tion whose direction also influences the activity positively as it
increases. nsF is the number of fluorine atom-type in the energy
state of the compound with least contribution having a negative
mean effect, this signifies a negative influence on the activity.
(Todeschini and Consonni, 2009).

The results in Table 5 shows the statistical regression output of
the three descriptors used in the developed model. From results,
the absolute t-statistics values for each descriptor are greater than
2, this also inferred that the selected descriptors were good. The p-
values of all descriptors in the model are less than 0.05 which
means that there is a relationship between the descriptors and
the activities of the compounds.

MLR Y-Randomization output revealed low R2 and Q2 values for
10 trials as anticipated which confirmed that the QSAR model is
robust, while the cRp^2 value is 0.7397 which is greater than 0.5
as shown in Table 6. (Roy et al., 2013). Fig. 3 displays the plot of
predicted activities of both the training and the test sets versus
the experimental activities (pIC50).

The standardized residual was plotted against IC50 (experimen-
tal) as presented in ‘‘Fig. 4”, and the plot illustrated a random scat-
tering around the baseline of data at the standardized residual
equal to zero which depicts no systematic error in the model.

The standardized residuals were plotted against the leverage
values (Williams Plot) as shown in Fig. 5 so as to detect the struc-
tural outliers in the model. The plot shows that all compounds are
within the applicability domain with a threshold value (H*) of 0.75
except compound 11. Therefore, compound 11 is considered an
influential compound which may be due to the differences in sub-
stitution pattern of the chemical structure in the dataset.
3.2. Docking results

Computational docking was carried out on the compound 1 and
11 with Bcl-2 protein crystal structure (target) respectively. The
docking results comprising the binding affinity, interaction type,



Table 4
Statistical correlation analysis.

ATSC3m VE1_DzZ nSF Mean Effect VIF

ATSC3m 1 0.2882 1.0682
VE1_DzZ 0.03341 1 0.8057 1.1351
nsF �0.22592 0.327015 1 �0.0939 1.1948

*VIF is the variance inflation factor.

Table 5
Regression output of the descriptors.

Coefficients Standard Error t Stat P-value

Intercept 6.4810 0.1866 4.7289 2.07E2�13
ATSC3m 0.0007 0.0001 4.8889 0.0003
VE1_DzZ �1.8046 0.4284 4.2124 0.0012
nsF 0.3407 0.0599 5.6836 0.0001

Table 6
Y-randomization.

Model R R2 Q2

Original 0.8986 0.8075 0.6866
Trial 1 0.3388 0.1148 �2.1079
Trial 2 0.2252 0.0507 �1.4596
Trial 3 0.3990 0.1592 �2.1375
Trial 4 0.4332 0.1877 �0.4340
Trial 5 0.4406 0.1941 �1.2894
Trial 6 0.4408 0.1943 �0.1941
Trial 7 0.2712 0.0735 �2.4841
Trial 8 0.3829 0.1466 �0.7092
Trial 9 0.0741 0.0054 �2.3501
Trial 10 0.5975 0.3570 0.0006

Random Models Parameters

Average r: 0.3603
Average r2: 0.1483
Average Q2: �1.3165
cRp2: 0.7397

Fig. 3. The plot of Predicted against inhibitory concentration (Experimental).

Fig. 4. Standardized residual against inhibitory concentration (Experimental).

Fig. 5. Standardized residuals vs leverages plot (Williams plot).
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bond type, and distance was presented in Table 7. Our results show
binding affinity of �8.7 kcal/mol for complex 1 and �9.3 kcal/mol
for complex 11, which means that the latter forms the most stable
complex when a ligand (compound 11) binds with the target. The
two complexes were visualized using the discovery studio so as to
elucidate their molecular interactions. Ligand 1 formed three (3)
major interactions (hydrogen, hydrophobic and electrostatic) with
the target. Furthermore, oxygen in carbonyl (C@O) of urea formed
H-bond with ARG183 (2.8346 Ao) and two amino acids of ARG127
at different distances (1.9058 and 2.4960A0) respectively. Also, the
pi-orbital containing delocalized electrons in the benzene ring
(ligand 1) interacts with CAH, pi- orbitals and an alkyl group of
THR122 (3.6935 Ao), HIS184 (5.886 Ao), and PRO123 (4.7943 Ao)
amino acids to form hydrophobic bonds. However, ligand 11
formed four (4) major interactions namely; hydrogen bond,
hydrophobic, halogen and electrostatic bond. The fluoro sub-
stituent on urea moiety of C14 acts as an H-bond donor (Halogen)
which formed a conventional hydrogen bond with ARG127 at
2.26417Ao bond distance. There was also hydrogen bond interac-
tion between ANH group of urea on C14 and GLU135 (2.96421
Ao), between an oxygen on C6 (AOACH3) and HIS184 (2.2300 Ao)
respectively. The result revealed carbon-hydrogen bond interac-
tions for ARG183 (3.3161Ao), halogen bond interaction with two



Table 7
Binding affinity, interaction type, bond type and distance of the stable complexes.

Complex Binding Affinity (kcal/mol) Amino acids Bond type Interaction Distance (A0)

1 �8.7 ARG127 Hydrogen Bond Conventional Hydrogen Bond 1.9058
ARG127 Hydrogen Bond Conventional Hydrogen Bond 2.4960
ARG183 Hydrogen Bond Conventional Hydrogen Bond 2.8346
ARG129 Hydrogen Bond Conventional Hydrogen Bond 2.1102
HIS184 Electrostatic Pi- Cation 4.7956
THR122 Hydrophobic Pi-Sigma 3.6935
HIS184 Hydrophobic Pi-Pi T-shaped 5.8869
PRO123 Hydrophobic Pi-Alkyl 4.7943

11 �9.3 ARG127 Hydrogen Bond; Halogen Conventional Hydrogen Bond; Halogen (Fluorine) 2.2641
HIS184 Hydrogen Bond Conventional Hydrogen Bond 2.2300
GLU135 Hydrogen Bond Conventional Hydrogen Bond 2.9642
ARG183 Hydrogen Bond Carbon-Hydrogen Bond 3.3161
TRP176 Halogen Halogen (Fluorine) 3.6732
TRP176 Halogen Halogen (Fluorine) 3.4456
GLU179 Halogen Halogen (Fluorine) 3.4077
HIS184 Electrostatic Pi-Cation 3.8719
ARG129 Electrostatic Pi-Cation 4.2961
HIS120 Hydrophobic Pi-Pi Stacked 5.6814
ALA131 Hydrophobic Pi-Alkyl 4.5006
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TRP176 amino acids at different distance (3.3161 & 3.44563 Ao)
and GLU179 (3.40773Ao), then hydrophobic bond interactions with
HIS120 (5.68146Ao), ALA131 (4.50067Ao) and electrostatic bond
with ARG129 (3.87199Ao) which is a pi-orbital-cation interaction.
The hydrogen bond together with hydrophobic interactions in
the complexes is an indication that ligand 1 and 11 of the inhibitor
compounds are potent against Bcl-2 receptor (Abdulfatai et al.,
2016). Figs. 6a and 6b showed the molecular interaction in 2D
and 3D, while Figs. 7a and 7b exposed the H-bond molecular inter-
action in 3D for both complex 1 and 2 respectively.

3.3. Conclusion

The computational modelling results adequately provide
knowledge on the quantum structure–activity relationship by
using some numerical features from structures of C14-urea com-
pounds that influence the biological activities of prostate cancer
Fig. 6a. 2D and 3D molecular interactio
(PC3) cell line. The QSAR model containing ATSC3m, VE1_DzZ
and nsF descriptors from genetic function approximation was able
to predict the activity (IC50) values of the inhibitors. Results from
mean effect analysis of these descriptors revealed the positive rel-
ative importance of ATSC3m and VE1_DzZ descriptors on influenc-
ing the inhibitory concentrations, while nsF depicts negative
influence. The model was accepted due to its statistical significance
based on the global threshold values for accepting QSAR model.
Docking studies further exposed the kind of interactions between
the best inhibitors among the data set and the Bcl-2 protein as a
target. The docking results showed compound 1 and 11 having
binding values of �8.3 kcal/mol and �9.3 kcal/mol formed
hydrophobic and hydrogen bond interaction with the amino acid
residue of B-cell lymphoma 2 (Bcl-2) protein which control cell
death in prostate cancer. This research depicted a route for design-
ing new C14-urea-tetrandrine derivatives with excellent inhibitory
potentials.
ns for Complex 1 (�8.7 kcal/mol).



Fig. 6b. 2D and 3D molecular interaction for Complex 11 (�9.3 kcal/mol).

Fig. 7a. H-bond molecular interaction between compound 1 and Bcl-2 protein
(target).

Fig. 7b. H-bond molecular interaction between compound 11 and Bcl-2 protein
(target).
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Minovski, N., Župerl, Š., Drgan, V., Novič, M., 2013. Assessment of applicability
domain for multivariate counter-propagation artificial neural network
predictive models by minimum Euclidean distance space analysis: a case
study. Anal. Chim. Acta 759, 28–42.

Myers, R.H., 1990. Classical and Modern Regression Application. Duxbury Press, CA.
Netzeva, T.I., Worth, A.P., Aldenberg, T., Benigni, R., Cronin, M.T., Gramatica, P.,
Myatt, G., 2005. Current status of methods for defining the applicability domain
of (quantitative) structure-activity relationships. ATLA 33, 155–173.

Roy, K., Ambure, P., Aher, R.B., 2017. How important is to detect systematic error in
predictions and understand statistical applicability domain of QSAR models?
Chemom. Intell. Lab. Syst. 162, 44–54.

Roy, K., Chakraborty, P., Mitra, I., Ojha, P.K., Kar, S., Das, R.N., 2013. Some case
studies on application of ‘‘rm2” metrics for judging quality of quantitative
structure-activity relationship predictions: emphasis on scaling of response
data. J. Comput. Chem. 34 (12), 1071–1082.

Tropsha, A., 2010. Best practices for QSAR model development, validation, and
exploitation. Mol. Inf. 29 (6–7), 476–488.

Tropsha, A., Gramatica, P., Gombar, V.K., 2003a. The importance of being earnest:
validation is the absolute essential for successful application and interpretation
of QSPR models. Mol. Inform. 22, 69–77.

Tropsha, A., Gramatica, P., Gombar, V.K., 2003b. The importance of being earnest:
validation is the absolute essential for successful application and interpretation
of QSPR models. QSAR Comb. Sci. 22 (1), 69–77.

Tso, C.L., McBride, W.H., Sun, J., Patel, B., Tsui, K.H., Paik, S.H., Belldegrun, A., 2000.
Androgen deprivation induces selective outgrowth of aggressive hormone-
refractory prostate cancer clones expressing distinct cellular and molecular
properties not present in parental androgen-dependent cancer cells. Cancer J.
(Sudbury, Mass.) 6 (4), 220–233.

Todeschini, R., Consonni, V., 2009. Molecular descriptors for chemo-informatics.
Weinheim: Wiley-VCH; (Methods and principles in medicinal chemistry). ISBN:
9783527318520.

Yap, C.W., 2011. PaDEL-descriptor: an open source software to calculate molecular
descriptors and fingerprints. J. Comput. Chem. 32 (7), 1466–1474.

http://CRAN.Rproject.org
http://CRAN.Rproject.org
http://refhub.elsevier.com/S1018-3647(18)32152-9/h0065
http://refhub.elsevier.com/S1018-3647(18)32152-9/h0065
http://refhub.elsevier.com/S1018-3647(18)32152-9/h0065
http://refhub.elsevier.com/S1018-3647(18)32152-9/h0065
http://refhub.elsevier.com/S1018-3647(18)32152-9/h0070
http://refhub.elsevier.com/S1018-3647(18)32152-9/h0070
http://refhub.elsevier.com/S1018-3647(18)32152-9/h0070
http://refhub.elsevier.com/S1018-3647(18)32152-9/h0070
http://refhub.elsevier.com/S1018-3647(18)32152-9/h0075
http://refhub.elsevier.com/S1018-3647(18)32152-9/h0080
http://refhub.elsevier.com/S1018-3647(18)32152-9/h0080
http://refhub.elsevier.com/S1018-3647(18)32152-9/h0085
http://refhub.elsevier.com/S1018-3647(18)32152-9/h0085
http://refhub.elsevier.com/S1018-3647(18)32152-9/h0085
http://refhub.elsevier.com/S1018-3647(18)32152-9/h0090
http://refhub.elsevier.com/S1018-3647(18)32152-9/h0090
http://refhub.elsevier.com/S1018-3647(18)32152-9/h0090
http://refhub.elsevier.com/S1018-3647(18)32152-9/h0090
https://doi.org/10.1016/j.ejmech.2017.11.007
http://refhub.elsevier.com/S1018-3647(18)32152-9/h0100
http://refhub.elsevier.com/S1018-3647(18)32152-9/h0100
http://refhub.elsevier.com/S1018-3647(18)32152-9/h0100
http://refhub.elsevier.com/S1018-3647(18)32152-9/h0100
http://refhub.elsevier.com/S1018-3647(18)32152-9/h0105
http://refhub.elsevier.com/S1018-3647(18)32152-9/h0110
http://refhub.elsevier.com/S1018-3647(18)32152-9/h0110
http://refhub.elsevier.com/S1018-3647(18)32152-9/h0110
http://refhub.elsevier.com/S1018-3647(18)32152-9/h0115
http://refhub.elsevier.com/S1018-3647(18)32152-9/h0115
http://refhub.elsevier.com/S1018-3647(18)32152-9/h0115
http://refhub.elsevier.com/S1018-3647(18)32152-9/h0120
http://refhub.elsevier.com/S1018-3647(18)32152-9/h0120
http://refhub.elsevier.com/S1018-3647(18)32152-9/h0120
http://refhub.elsevier.com/S1018-3647(18)32152-9/h0120
http://refhub.elsevier.com/S1018-3647(18)32152-9/h0120
http://refhub.elsevier.com/S1018-3647(18)32152-9/h0125
http://refhub.elsevier.com/S1018-3647(18)32152-9/h0125
http://refhub.elsevier.com/S1018-3647(18)32152-9/h0130
http://refhub.elsevier.com/S1018-3647(18)32152-9/h0130
http://refhub.elsevier.com/S1018-3647(18)32152-9/h0130
http://refhub.elsevier.com/S1018-3647(18)32152-9/h0135
http://refhub.elsevier.com/S1018-3647(18)32152-9/h0135
http://refhub.elsevier.com/S1018-3647(18)32152-9/h0135
http://refhub.elsevier.com/S1018-3647(18)32152-9/h0140
http://refhub.elsevier.com/S1018-3647(18)32152-9/h0140
http://refhub.elsevier.com/S1018-3647(18)32152-9/h0140
http://refhub.elsevier.com/S1018-3647(18)32152-9/h0140
http://refhub.elsevier.com/S1018-3647(18)32152-9/h0140
http://refhub.elsevier.com/S1018-3647(18)32152-9/h0150
http://refhub.elsevier.com/S1018-3647(18)32152-9/h0150

	In-silico modelling studies on some C14-urea-tetrandrine derivatives as potent anti-cancer agents against prostate (PC3) cell line
	1 Introduction
	2 Methodology
	2.1 QSAR Studies
	2.1.1 Dataset
	2.1.2 Equilibrium geometry
	2.1.3 PaDEL descriptors calculation
	2.1.4 Data pretreatment and division
	2.1.5 Model building and validation
	2.1.6 Prediction error analysis
	2.1.7 MLR Y-Randomization
	2.1.8 Mean effect
	2.1.9 Varian inflation factor (VIF)
	2.1.10 Applicability domain

	2.2 Computational docking studies
	2.2.1 Making of ligand and target
	2.2.2 Docking process


	3 Results and discussion
	3.1 QSAR studies
	3.2 Docking results
	3.3 Conclusion

	Acknowledgements
	References


